DOI QR코드

DOI QR Code

Analysis of Change Rate of SBP and DBP Estimation Fusion Algorithm According to PTT Measurement change PPG Pulse Wave Analysis

PPG 맥파 분석의 PTT 측정변화에 따른 SBP, DBP 추정 융합 알고리즘 변화율 분석

  • Kim, Seon-Chil (Department of Biomedical Engineering, Keimyung University)
  • 김선칠 (계명대학교 의용공학과)
  • Received : 2020.05.01
  • Accepted : 2020.07.20
  • Published : 2020.07.28

Abstract

Recently, devices such as smart watches capable of measuring small biosignals have been released. Body composition, blood pressure, heart rate, and oxygen saturation can be easily obtained. However, the part that is not trusted by the user is accuracy. These biosignals are sensitive to the external environment and have large fluctuations depending on the conditions inside the subject's body. Blood pressure measurements, in particular, still give different results, depending on how the conditions in the body are handled. Therefore, in this study, PPG was analyzed to measure PTT at two points of 80% and 100%, the highest in PTT measurement. The effect of the measured value on SBP and DBP was analyzed and a method was proposed to increase the accuracy. As a result of the study, the measured value of PTT at 80% of the peak PPG is more effective in estimating blood pressure of SBP and DBP than the value measured at 100%. In the regression analysis of the rate of change blood pressure estimation, the coefficient of determination of SBP (80%) was 0.6946, and DBP (100%) was 0.547.

최근 초소형 생체신호를 측정할 수 있는 스마트 워치 등의 장비들이 출시됨에 따라, 체성분, 혈압, 심박동수, 산소포화도 등 다양한 정보를 쉽게 얻을 수 있다. 그러나 사용자에게 신뢰를 얻지 못하는 부분이 바로 정확성이다. 이러한 생체신호는 외부 환경에 대해 민감하며, 대상자 신체 내부의 조건에 따라 변동값이 크다. 특히 혈압 측정은 아직 신체 내부의 조건들의 처리에 따라 결과값이 다르다. 따라서 실험에서는 PPG 알고리즘에서 혈관 상태를 정의하는 인자를 특정값으로 처리하고 PPG를 분석하였으며, PTT 측정에 있어서 최고점 80%, 100%의 두 지점 PTT 측정값이 SBP와 DBP에 미치는 영향을 분석하였다. 또한 정확도를 높이기 위한 방안 중 하나를 제시하고자 하였다. 연구결과 PPG 최고점 80%에서 측정값 PTT값이 100%에서 측정한 값보다 SBP, DBP 혈압추정에 효과적이며, 변화율 혈압추정의 회귀분석에서 SBP(80%)의 결정계수가 0.6946, DBP(100%)는 0.547로 나타났다. 결론적으로 ECG와 PPG를 통해 PTT를 측정할 경우 PPG 80% 지점의 측정값이 혈압추정의 정확도를 향상시킬 수 있다.

Keywords

References

  1. Ezzati M, Lopez AD, Rodgers A. & Murray CJL. (2006). Comparative quantification of health risks: globaland regional burden of disease attributable to selected major risk factorsby Majid Ezzati. Canadian Journal of Public Health, 97(4), 319.
  2. Asada, H., Reisner, A. & Shaltis, P. (2005). Towards the Development of Wearable Blood Pressure Sensors : A Photo-Plethysmograph Approach Using Conducting Polymer Actuators. IEEE Engineering in Medicine and Biology Magazine, 1-4. DOI : 10.1109/IEMBS.2005.1615379
  3. D. C. Zheng & Y. T. Zhang. (2003). A ring-type Device for the Noninvasive Measurement of Arterial Blood Pressure. IEEE Engineering in Medicine and Biology Magazine, 17-21. DOI: 10.1109/IEMBS.2003.1280819
  4. W. Wu, J. T. Lee & H. Chen. (2009). Estimation of Heart Rate Variability Changes during Different Visual Stimulations Using Non-invasive Continuous ECG Monitoring System, International Joint Conference on Bioinformatics, 344-347. DOI : 10.1109/IJCBS.2009.75
  5. L. A. Geddes et al. (1981). Pulse Transit Time as an Indicator of Arterial Blood Pressure, Psychophysiology, 18(1), 71-74. DOI : 10.1111/j.1469-8986.1981.tb01545.x
  6. M Nitzan, B Khanokh & Y. Slovik. (2002). The difference in pulse transit time to the toe and finger measured by photoplethysmography. Physiol. Meas, 23, 85-93. DOI : 10.1088/0967-3334/23/1/308
  7. C. Z. Myint, K. H. Lim & K. l. Wong. (2014). Alpha Agape Gopalai, Blood Pressure Measurement from Photo-plethysmography to Pulse Transit Time. IEEE Conference on Biomedical Engineering and Sciences. DOI : 10.1109/IECBES.2014.7047550
  8. Mase M., Mattei W., Cucino R., Faes L. & Nollo G. (2011). Feasibility of cuff-free measurement of systolic and diastolic arterial blood pressure. Journal of electrocardiology, 44(2), 201-207. DOI : 10.1016/jelectrocard.2010.11.019
  9. Geddes L., Voelz M., James S. & Reiner D. (1981). Pulse arrival time as a method of obtaining systolic and diastolic blood pressure indirectly. Biomedical Engineering and Computer, 19(5), 671-672. DOI : 10.1007/BF02442787
  10. Pernot Mathieu, Fujikura Kana & Fung-Kee-Fung Simon D. (2007). ECG-gated, Mechanical and Electromechanical Wave Imaging of Cardiovascular Tissues In Vivo, Ultrasound in Medicine and Biology, 33(7), 1075-1085. DOI : 10.1016/j.ultrasmedbio.2007.02.003
  11. Mohamed EL. (2012). On the Analysis of Fingertip Photoplethysmogram Signals. Current Cardiology Reviews, 8, 14-25. DOI : 10.2174/157340312801215782
  12. J. Pan & W. J. Tompkins. (1985). A Real-Time QRS Detection Algorithm. IEEE Trans. Biomed. Eng, 32(3), 230-236. DOI : 10.1109/TBME.1985.325532
  13. S. C. Kim & S. H. Cho. (2019). Analysis of the Convergence Algorithm Model for Estimating Systolic and Diastolic Blood Pressure Based on Two Photoplethysmography, Journal of The Korea Convergence Society, 10(8), 53-58. DOI : 10.15207/JKCS.2019.10.8.053
  14. Brock J., Pitson D. & Stradling J. (1993). Use of pulse transit time as a measure of changes in respiratory effort. Journal of Ambul Monit, 6, 295-302. DOI: 10.1183/09031936.95.08101669
  15. D. Lemogoum et al. (2004). Validity of pulse pressure and augmentation index as surrogate measures of arterial stiffness during beta-adrenergic stimulation. Journal of Hypertens, 22, 511-517. DOI: 10.1097/00004872-200403000-00013
  16. J. Y. A. Foo, C. S. Lim & P. Wang. (2006). Evaluation of blood pressure changes using vascular transit time. Physiological Measurement, 27(8), 685-694. DOI: 10.1088/0967-3334/27/8/003