DOI QR코드

DOI QR Code

Failure Analysis by Fracture Study of Connecting Rod Bolts in Diesel Engine for Military Tracked Vehicles

군용 궤도차량 디젤엔진의 커넥팅 로드 볼트 파손 검토를 통한 고장원인분석

  • Oh, Dae San (Defense Agency for Technology and Quality) ;
  • Kim, Ji Hoon (Defense Agency for Technology and Quality) ;
  • Seo, Suk Ho (Defense Agency for Technology and Quality)
  • Received : 2020.03.26
  • Accepted : 2020.07.03
  • Published : 2020.07.31

Abstract

Tracked military vehicles are operated under harsher conditions and climates than ordinary vehicles, and the components require high degrees of reliability and durability. A diesel engine is the main power generator, and when the vehicle breaks down, there is a high possibility of causing a large-scale accident. Therefore, analyzing the cause of engine failure can be important for preventing similar cases that may occur. In this study, we clarified the mechanism of engine failure according to an overhaul test, hardness measurement, and an analysis of the fracture surface. The overhaul test confirmed that a bolt was separated from the connecting rod (number 4). In addition, the hardness measurement results of the connecting rod bolt conformed to the standard, and it was found that the bolt fracture was ductile fracture through an analysis of the fracture surface. Based on the results, it was concluded that damage to a diesel engine of a tracked military vehicle was caused by separating and damage caused by loosening of the connecting rod bolts, resulting in cascading damage. The results of the study could be used as reference examples and could be useful for another study on engine failure analysis.

군용 궤도차량은 일반 차량보다 더 가혹한 주행조건과 기후환경에서 운용되며, 이러한 환경에서 사용되기 위하여 적용되는 부품들은 고도의 신뢰성과 내구성이 요구된다. 특히 디젤엔진은 군용 궤도차량의 주 동력발생장치로써, 차량 주행 간 고장이 발생할 시에 대형사고로 이어질 가능성이 높다. 따라서 엔진의 고장 및 파손원인을 분석하는 것은 추후 발생할 수 있는 유사한 사례를 사전에 예방할 수 있는 중요한 과정이라고 할 수 있다. 본 연구에서는 군용 궤도차량 주행 간 발생된 고장 엔진에 대하여 분해검사와 경도 측정, 파단면 분석 등의 파손원인검토를 통하여 엔진 파손 메커니즘을 규명하였다. 파손 엔진에 대한 분해검사를 통하여 4번 커넥팅 로드에서 볼트가 분리되어 이탈된 것이 확인되었다. 또한 4번 커넥팅 로드 볼트의 경도 측정 결과는 규격에 적합하였으며, 파손된 볼트의 파단면 분석을 통하여 볼트는 연성파괴 되었다는 것을 알 수 있었다. 이와 같은 분석 결과를 바탕으로 이번에 발생된 군용 궤도차량 디젤엔진의 파손은 최초 4번 커넥팅 로드 볼트의 풀림으로 인한 이탈과 파손이 연쇄적인 손상으로 이어져 발생되었던 것으로 판단되었다. 본 연구에서 수행한 엔진 고장원인분석 결과는 향후 타 장비의 유사한 엔진 고장 및 파손원인분석 연구에 참고사례 및 유용한 자료가 될 수 있을 것으로 사료된다.

Keywords

References

  1. G. H. Jung, S. G. Sin, C. H. Park, and D. S. Oh, "Military Engine Process Improvement for Visualization and Increasing Discrimination of Oil Leak", Proceeding of 2019 Spring Season Korean Society Of Automotive Engineers, The Korean Society Of Automotive Engineers, Jeju, Korea, pp. 1349, May 2019.
  2. J. H. Yun, I. G. Jeong, C. S. Yi, J. S. Suh, and T. E. Lee, "A Numerical Analysis on the Flow Characteristics of Cooling Fan in the Generator a Auxiliary Power Unit for Tracked Vehicle", Proceeding of 2011 Spring Season Korean Society Of Automotive Engineers, The Korean Society Of Automotive Engineers, Jeju, Korea, pp. 304-308, May 2011.
  3. D. S. Oh, G. H. Jung, S. H. Seo, and C. H. Park, "Military Engine Quality Securing Plan between Engine Performance Test according to Applying Fluorescent Dye", Proceeding of 2019 Fall Season Korea Society for Quality Management, The Korea Society for Quility Management, Incheon, Korea, pp. 2018, September, 2019.
  4. S. H. Seo, J. H. Kim, and D. S. Oh, "Process Improvement of Land System Engine for Visualization and Increasing Identification of Engine Oil Leakage", Journal of the Korea Academia-Industrial Cooperation Society, Vol. 21, No. 3, pp. 321-327, Mar. 2020. DOI: http://doi.org/10.5762/KAIS2020.21.3.321
  5. H. M. Beak, H. M. Kim, T. W. Kang, Y. H. Heo, K. I. Son, and K. R. Kim, "Failure Analysis of the First Article Endurance Tests of 1,500 HP Transmission", Journal of Defense Quality Society , Vol. 1, No. 2, pp. 68-85, Jun. 2019.
  6. F. S. Silva, "Fatigue on Engine Pistons - A Compendium of Case Studies", Engineering Failure Analysis, Vol. 13, No. 23, pp. 480-492, March, 2005. DOI: https://doi.org/10.1016/j.engfailanal.2004.12.023
  7. A. Vencl, A. Rac, "Diesel Engine Crankshaft Journal Bearings Failures: Case Study", Engineering Failure Analysis, Vol. 22, No. 5, pp. 217-228, May, 2014. DOI: http://dx.doi.org/10.1016/j.engfailanal.2014.05.014
  8. N. D. S. A. Santos, V. R. Roso, and M. T. C. Faria, "Review of Engine Journal Bearing Tribology in Start-stop Applications", Engineering Failure Analysis, Vol. 108, No. 104344, pp. 1-16, November, 2019. DOI: https://doi.org/10.1016/j.engfailanal.2019.104344
  9. Defense Acquisition Program Administration, "Defense Acquisition Quality Control Provision", pp. 22-24, Defense Acquisition Program Administration, 2019.
  10. E. Greuter and S. Zima, "Engine Failure Analysis: Internal Combustion Engine Failures and Their Causes", p. 1-185, SAE International, 2012.
  11. Deutsches Institute for Normung e. V., DIN 73021, "Designation of the Rotational Direction, the Cylinders and the Ignition Circuits of Motorcar Engines", June, 1953.
  12. J. L. A. Ferreira, A. B. S. Oliveira, A. B. Souza, V. G. Carloni, and D. A. Leite, "Structural Integrity Analysis of the Main Bearing Cap Screws of the Turbo-diesel Engine Crank Shaft", Engineering Failure Analysis, Vol. 12, No. 3, pp. 273-286, November, 2004. DOI: https://doi.org/10.1016/j.engfailanal.2004.03.011
  13. G. A. Zade and D. D. Gadekar, "Accelerated Simulation of Engine Wet Cylinder Liner Cavitation Test Procedure", Symposium on International Automotive Technology, The Automotive Research Association of India, Pune, India, pp. 313-319. May, 2007.
  14. O. P. Singh, Y. Umbarkar, T. Sreenivasulu, E. Vetrivendan, M. Kannan, and Y. R. Babu, "Piston Seizure Investigation: Experiments, Modeling and Future Challenges", Engineering Failure Analysis, Vol. 28, No. 5, pp. 302-310, November, 2012. DOI: http://dx.doi.org/10.1016/j.engfailanal.2012.11.005
  15. O. Asi, "Fatigue Failure of a Helical Gear in a Gearbox", Engineering Failure Analysis , Vol. 13, No. 7, pp. 1116-1125, September, 2005. DOI: https://doi.org/10.1016/j.engfailanal.2005.07.020
  16. H. Somekawa, K. Nakajima, A. Singh, and T. Mukai, "Ductile Fracture Mechanism in Fine-grained Magnesium Alloy", Engineering Failure Analysis , Vol. 90, No. 11, pp. 831-839, February, 2010. DOI: https://doi.org/10.1080/09500839.2010.508444
  17. K. Srinivasan, O. Kolednik, and T. Siegmund, "A Micromechanics-based Model for Micro-toughness Estimation from Dimple Geometry Measurements", Engineering Fracture Mechanics, Vol. 74, No. 7, pp. 1323-1343, September, 2006. DOI: https://doi.org/10.1016/j.engfracmech.2006.07.004
  18. J. B. Marcomini, C. A. R. P. Baptista, J. P. Pascon, R. L. Teixeira, and F. P. Reis, "Investigation of a Fatigue Failure in a Stainless Steel Femoral Plate", Journal of the Mechanical Behavior of Biomedical Materials, Vol. 38, No. 11, pp. 52-58, July, 2014. DOI: http://dx.doi.org/10.1016/j.jmbbm.2014.06.011