DOI QR코드

DOI QR Code

Menadione Sodium Bisulfite-Protected Tomato Leaves against Grey Mould via Antifungal Activity and Enhanced Plant Immunity

  • Jo, Youn Sook (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Park, Hye Bin (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Kim, Ji Yun (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Choi, Seong Min (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Lee, Da Sol (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Kim, Do Hoon (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Lee, Young Hee (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Park, Chang-Jin (Department of Bioresources Engineering, Sejong University) ;
  • Jeun, Yong-Chull (College of Applied Life Science, Faculty of Bioscience and Industry, The Research Institute for Subtropical Agriculture and Biotechnology, Jeju National University) ;
  • Hong, Jeum Kyu (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
  • 투고 : 2020.06.29
  • 심사 : 2020.07.16
  • 발행 : 2020.08.01

초록

Tomato grey mould has been one of the destructive fungal diseases during tomato production. Ten mM of menadione sodium bisulfite (MSB) was applied to tomato plants for eco-friendly control of the grey mould. MSB-reduced tomato grey mould in the 3rd true leaves was prolonged at least 7 days prior to the fungal inoculation of two inoculum densities (2 × 104 and 2 × 105 conidia/ml) of Botrytis cinerea. Protection efficacy was significantly higher in the leaves inoculated with the lower disease pressure of conidial suspension compared to the higher one. MSB-pretreatment was not effective to arrest oxalic acid-triggered necrosis on tomato leaves. Plant cell death and hydrogen peroxide accumulation were restricted in necrotic lesions of the B. cinereainoculated leaves by the MSB-pretreatment. Decreased conidia number and germ-tube elongation of B. cinerea were found at 10 h, and mycelial growth was also impeded at 24 h on the MSB-pretreated leaves. MSB-mediated disease suppressions were found in cotyledons and different positions (1st to 5th) of true leaves inoculated with the lower conidial suspension, but only 1st to 3rd true leaves showed decreases in lesion sizes by the higher inoculum density. Increasing MSB-pretreatment times more efficiently decreased the lesion size by the higher disease pressure. MSB led to inducible expressions of defence-related genes SlPR1a, SlPR1b, SlPIN2, SlACO1, SlChi3, and SlChi9 in tomato leaves prior to B. cinerea infection. These results suggest that MSB pretreatment can be a promising alternative to chemical fungicides for environment-friendly management of tomato grey mould.

키워드

참고문헌

  1. Ahn, I.-P., Kim, S. and Lee, Y.-H. 2005. Vitamin B1 functions as an activator of plant disease resistance. Plant Physiol. 138:1505-1515. https://doi.org/10.1104/pp.104.058693
  2. Asselbergh, B., Curvers, K., Franca, S. C., Audenaert, K., Vuylsteke, M., Van Breusegem, F. and Hofte, M. 2007. Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol. 144:1863-1877. https://doi.org/10.1104/pp.107.099226
  3. Barral, B., Chillet, M., Minier, J., Lechaudel, M. and Schorr-Galindo, S. 2017. Evaluating the response to Fusarium ananatum inoculation and antifungal activity of phenolic acids in pineapple. Fungal Biol. 121:1045-1053. https://doi.org/10.1016/j.funbio.2017.09.002
  4. Barry, C. S., Blume, B., Bouzayen, M., Copper, W., Hamilton, A. J. and Grierson, D. 1996. Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato. Plant J. 9:525-535. https://doi.org/10.1046/j.1365-313X.1996.09040525.x
  5. Ben-Jabeur, M., Ghabri, E., Myriam, M. and Hamada, W. 2015. Thyme essential oil as a defense inducer of tomato against gray mold and Fusarium wilt. Plant Physiol. Biochem. 94:35-40. https://doi.org/10.1016/j.plaphy.2015.05.006
  6. Blume, B. and Grierson, D. 1997. Expression of ACC oxidase promoter-GUS fusions in tomato and Nicotiana plumbaginifolia regulated by developmental and environmental stimuli. Plant J. 12:731-746. https://doi.org/10.1046/j.1365-313X.1997.12040731.x
  7. Borges, A. A., Cools, H. J. and Lucas, J. A. 2003. Menadione sodium bisulphite: a novel plant defence activator which enhances local and systemic resistance to infection by Leptosphaeria maculans in oilseed rape. Plant Pathol. 52:429-436. https://doi.org/10.1046/j.1365-3059.2003.00877.x
  8. Borges, A. A., Dobon, A., Exposito-Rodriguez, M., Jimenez-Arias, D., Borges-Perez, A., Casanas-Sanchez, V., Perez, J. A., Luis, J. C. and Tornero, P. 2009. Molecular analysis of menadione-induced resistance against biotic stress in Arabidopsis. Plant Biotechnol. J. 7:744-762. https://doi.org/10.1111/j.1467-7652.2009.00439.x
  9. Borges, A. A., Jimenez-Arias, D., Exposito-Rodriguez, M., Sandalio, L. M. and Perez, J. A. 2014a. Priming crops against biotic and abiotic stresses: MSB as a tool for studying mechanisms. Front. Plant Sci. 5:642.
  10. Borges, A, V., Saraiva, R. M. and Maffia, L. A. 2014b. Key factors to inoculate Botrytis cinerea in tomato plants. Summa Phytopathol. 40:221-225. https://doi.org/10.1590/0100-5405/1929
  11. Botanga, C. J., Bethke, G., Chen, Z., Gallie, D. R., Fiehn, O. and Glazebrook, J. 2012. Metabolite profiling of Arabidopsis inoculated with Alternaria brassicicola reveals that ascorbate reduces disease severity. Mol. Plant-Microbe Interact. 25:1628-1638. https://doi.org/10.1094/MPMI-07-12-0179-R
  12. Boukaew, S., Prasertsan, P., Troulet, C. and Bardin, M. 2017. Biological control of tomato gray mold caused by Botrytis cinerea by using Streptomyces spp. BioControl 62:793-803. https://doi.org/10.1007/s10526-017-9825-9
  13. Carisse, O. and Van der Heyden, H. 2015. Relationship of airborne Botrytis cinerea conidium concentration to tomato flower and stem infections: a threshold for de-leafing operations. Plant Dis. 99:137-142. https://doi.org/10.1094/PDIS-05-14-0490-RE
  14. Chen, X., Wang, Y., Gao, Y., Gao, T. and Zhang, D. 2019. Inhibitory abilities of Bacillus isolates and their culture filtrates against the gray mold caused by Botrytis cinerea on postharvest fruit. Plant Pathol. J. 35:425-436. https://doi.org/10.5423/PPJ.OA.03.2019.0064
  15. Diaz, J., ten Have, A. and van Kan, J. A. L. 2002. The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea. Plant Physiol. 129:1341-1351. https://doi.org/10.1104/pp.001453
  16. Du, M., Zhao, J., Tzeng, D. T. W., Liu, Y., Deng, L., Yang, T., Zhai, Q., Wu, F., Huang, Z., Zhou, M., Wang, Q., Chen, Q., Zhong, S., Li, C.-B. and Li, C. 2017. MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonatemediated plant immunity in tomato. Plant Cell 29:1883-1906. https://doi.org/10.1105/tpc.16.00953
  17. Egan, M. J., Wang, Z.-Y., Jones, M. A., Smirnoff, N. and Talbot, N. J. 2007. Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proc. Natl. Acad. Sci. U. S. A. 104:11772-11777. https://doi.org/10.1073/pnas.0700574104
  18. Elad, Y. 1990. Production of ethylene by tissues of tomato, pepper, French-bean and cucumber in response to infection by Botrytis cinerea. Physiol. Mol. Plant Pathol. 36:277-287. https://doi.org/10.1016/0885-5765(90)90059-7
  19. Elad, Y., Kohl, J. and Fokkema, N. J. 1994. Control of infection and sporulation of Botrytis cinerea on bean and tomato by saprophytic bacteria and fungi. Eur. J. Plant Pathol. 100:315-336. https://doi.org/10.1007/BF01876443
  20. El Oirdi, M., El Rahman, T. A., Rigano, L., El Hadrami, A., Rodriguez, M. C., Daayf, F., Vojnov, A. and Bouarab, K. 2011. Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato. Plant Cell 23:2405-2421. https://doi.org/10.1105/tpc.111.083394
  21. Fan, F., Li, N., Li, G. Q. and Luo, C. X. 2016. Occurrence of fungicide resistance in Botrytis cinerea from greenhouse tomato in Hubei province, China. Plant Dis. 100:2414-2421. https://doi.org/10.1094/PDIS-03-16-0395-RE
  22. Gao, P., Qin, J., Li, D. and Zhou, S. 2018. Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea. PLoS ONE 13:e0190932. https://doi.org/10.1371/journal.pone.0190932
  23. Govrin, E. M. and Levine, A. 2000. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr. Biol. 10:751-757. https://doi.org/10.1016/S0960-9822(00)00560-1
  24. Harel, T. M., Mehari, Z. H., Rav-David, D. and Elad, Y. 2014. Systemic resistance to gray mold induced in tomato by benzothiadiazole and Trichoderma harzianum T39. Phytopathology 104:150-157. https://doi.org/10.1094/PHYTO-02-13-0043-R
  25. Herrera-Tellez, V. I., Cruz-Olmedo, A. K., Plasencia, J., Gavilanes-Ruiz, M., Arce-Cervantes, O., Hernandez-Leon, S. and Saucedo-Garcia, M. 2019. The protective effect of Trichoderma asperellum on tomato plants against Fusarium oxysporum and Botrytis cinerea diseases involves inhibition of reactive oxygen species production. Int. J. Mol. Sci. 20:2007. https://doi.org/10.3390/ijms20082007
  26. Hong, J. K., Jo, Y. S., Ryoo, D. H., Jung, J. H., Kwon, H. J., Lee, Y. H., Chang, S. W. and Park, C.-J. 2018. Alternaria spots in tomato leaves differently delayed by four plant essential oil vapours. Res. Plant Dis. 24:292-301. https://doi.org/10.5423/RPD.2018.24.4.292
  27. Hong, J. K., Kim, H. J., Jung, H., Yang, H. J., Kim, D. H., Sung, C. H., Park, C.-J. and Chang, S. W. 2016. Differential control efficacies of vitamin treatments against bacterial wilt and grey mould diseases in tomato plants. Plant Pathol. J. 32:469-480. https://doi.org/10.5423/PPJ.OA.03.2016.0076
  28. Houben, M. and Van de Poel, B. 2019. 1-Aminocyclopropane-1-carboxylic acid oxidase (ACO): the enzyme that makes the plant hormone ethylene. Front. Plant Sci. 10:695. https://doi.org/10.3389/fpls.2019.00695
  29. Jacometti, M. A., Wratten, S. D. and Walter, M. 2010. Review: alternatives to synthetic fungicides for Botrytis cinerea management in vineyards. Aust. J. Grape Wine Res. 16:154-172. https://doi.org/10.1111/j.1755-0238.2009.0067.x
  30. Jimenez-Arias, D., Borges, A. A., Luis, J. C., Valdes, F., Sandalio, L. M. and Perez, J. A. 2015a. Priming effect of menadione sodium bisulphite against salinity stress in Arabidopsis involves epigenetic changes in genes controlling proline metabolism. Environ. Exp. Bot. 120:23-30. https://doi.org/10.1016/j.envexpbot.2015.07.003
  31. Jimenez-Arias, D., Perez, J. A., Luis, J. C., Martin-Rodriguez, V., Valdes-Gonzalez, F. and Borges, A. A. 2015b. Treating seeds in menadione sodium bisulphite primes salt tolerance in Arabidopsis by inducing an earlier plant adaptation. Environ. Exp. Bot. 109:23-30. https://doi.org/10.1016/j.envexpbot.2014.07.017
  32. Lee, Y. H., Kim, Y. J., Moon, J. Y., Kim, H. J., Park, J. M., Hwang, I. S. and Hong, J. K. 2019. Response of two Arabidopsis ecotypes Columbia-0 and Dijon-G to necrotrophic and biotrophic pathogens. Biol. Plant. 63:654-661. https://doi.org/10.32615/bp.2019.071
  33. Leyva, M. O., Vicedo, B., Finiti, I., Flors, V., Del Amo, G., Real, M. D., Garcia-Agustin, P. and Gonzalez-Bosch, C. 2008. Preventive and post-infection control of Botrytis cinerea in tomato plants by hexanoic acid. Plant Pathol. 57:1038-1046. https://doi.org/10.1111/j.1365-3059.2008.01891.x
  34. Li, L., Li, C., Lee, G. I. and Howe, G. A. 2002. Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proc. Natl. Acad. Sci. U. S. A. 99:6416-6421. https://doi.org/10.1073/pnas.072072599
  35. Li, X., Zhang, Y., Huang, L., Ouyang, Z., Hong, Y., Zhang, H., Li, D. and Song, F. 2014. Tomato SlMKK2 and SlMKK4 contribute to disease resistance against Botrytis cinerea. BMC Plant Biol. 14:166. https://doi.org/10.1186/1471-2229-14-166
  36. Luna, E., Beardon, E., Ravnskov, S., Scholes, J. and Ton, J. 2016. Optimizing chemically induced resistance in tomato against Botrytis cinerea. Plant Dis. 100:704-710. https://doi.org/10.1094/PDIS-03-15-0347-RE
  37. Mbengue, M., Navaud, O., Peyraud, R., Barascud, M., Badet, T., Vincent, R., Barbacci, A. and Raffaele, S. 2016. Emerging trends in molecular interactions between plants and the broad host range fungal pathogens Botrytis cinerea and Sclerotinia sclerotiorum. Front. Plant Sci. 7:422.
  38. Meng, L., Hofte, M. and Van Labeke, M.-C. 2019. Leaf age and light quality influence the basal resistance against Botrytis cinerea in strawberry leaves. Environ. Exp. Bot. 157:35-45. https://doi.org/10.1016/j.envexpbot.2018.09.025
  39. Monaco, C., Dal Bello, G., Rollan, M. C., Ronco, L., Lampugnani, G., Arteta, N., Abramoff, C., Aprea, A., Larran, S. and Stocco, M. 2009. Biological control of Botrytis cinerea on tomato using naturally occurring fungal antagonists. Arch. Phytopathol. Plant Protect. 42:729-737. https://doi.org/10.1080/03235400701390646
  40. Nambeesan, S., AbuQamar, S., Laluk, K., Mattoo, A. K., Mickelbart, M. V., Ferruzzi, M. G., Mengiste, T. and Handa, A. K. 2012. Polyamines attenuate ethylene-mediated defense responses to abrogate resistance to Botrytis cinerea in tomato. Plant Physiol. 158:1034-1045. https://doi.org/10.1104/pp.111.188698
  41. Nikolaou, E., Agrafioti, I., Stumpf, M., Quinn, J., Stansfield, I. and Brown, A. J. P. 2009. Phylogenetic diversity of stress signalling pathway in fungi. BMC Evol. Biol. 9:44. https://doi.org/10.1186/1471-2148-9-44
  42. Pietrowska, E., Rożalska, S., Kaźmierczak, A., Nawrocka, J. and Malolepsza, U. 2015. Reactive oxygen and nitrogen (ROS and RNS) species generation and cell death in tomato suspension cultures - Botrytis cinerea interaction. Protoplasma 252:307-319. https://doi.org/10.1007/s00709-014-0680-6
  43. Petrasch, S., Knapp, S. J., van Kan, J. A. L. and Blanco-Ulate, B. 2019. Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Mol. Plant Pathol. 20:877-892. https://doi.org/10.1111/mpp.12794
  44. Puthoff, D. P., Holzer, F. M., Perring, T. M. and Walling, L. L. 2010. Tomato pathogenesis-related protein genes are expressed in response to Trialeurodes vaporariorum and Bemisia tabaci biotype B feeding. J. Chem. Ecol. 36:1271-1285. https://doi.org/10.1007/s10886-010-9868-1
  45. Rossi, F. R., Krapp, A. R., Bisaro, F., Maiale, S. J., Pieckenstain, F. L. and Carrillo, N. 2017. Reactive oxygen species generated in chloroplasts contribute to tobacco leaf infection by the necrotrophic fungus Botrytis cinerea. Plant J. 92:761-773. https://doi.org/10.1111/tpj.13718
  46. Saito, S., Michailides, T. J. and Xiao, C. L. 2019. Fungicideresistant phenotypes in Botrytis cinerea populations and their impact on control of gray mold on stored table grapes in California. Eur. J. Plant Pathol. 154:203-213. https://doi.org/10.1007/s10658-018-01649-z
  47. Schuhegger, R., Ihring, A., Gantner, S., Bahnweg, G., Knappe, C., Vogg, G., Hutzler, P., Schmid, M., Van Breusegem, F., Eberl, L., Hartmann, A. and Langebartels, C. 2006. Induction of systemic resistance in tomato by N-acyl-L-homoserine lactoneproducing rhizosphere bacteria. Plant Cell Environ. 29:909-918. https://doi.org/10.1111/j.1365-3040.2005.01471.x
  48. Sivakumaran, A., Akinyemi, A., Mandon, J., Cristescu, S. M., Hall, M. A., Harren, F. J. M. and Mur, L. A. J. 2016. ABA suppresses Botrytis cinerea elicited NO production in tomato to influence $H_2O_2$ generation and increase host susceptibility. Front. Plant Sci. 7:709.
  49. Soylu, E. M., Kurt, S. and Soylu, S. 2010. In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. Int. J. Food Microbiol. 143:183-189. https://doi.org/10.1016/j.ijfoodmicro.2010.08.015
  50. Spotts, R. A., Wallis, K. M., Serdani, M., O'Gorman, D. T. and Sholberg, P. L. 2008. Methodology for determining relationships between inoculum concentration of Botrytis cinerea and Penicillium expansum and stem end decay of pear fruit. Plant Dis. 92:451-455. https://doi.org/10.1094/PDIS-92-3-0451
  51. Steel, C. C., Blackman, J. W. and Schmidtke, L. M. 2013. Grapevine bunch rots: impacts on wine composition, quality, and potential procedures for the removal of wine faults. J. Agric. Food Chem. 61:5189-5206. https://doi.org/10.1021/jf400641r
  52. Sung, C. H. and Hong, J. K. 2010. Sodium nitroprusside mediates seedling development and attenuation of oxidative stresses in Chinese cabbage. Plant Biotechnol. Rep. 4:243-251. https://doi.org/10.1007/s11816-010-0138-z
  53. Tornero, P., Conejero, V. and Vera, P. 1994. A gene encoding a novel isoform of the PR-1 protein family from tomato is induced upon viroid infection. Mol. Gen. Genet. 243:47-53. https://doi.org/10.1007/BF00283875
  54. Tornero, P., Gadea, J., Conejero, V. and Vera, P. 1997. Two PR-1 genes from tomato are differentially regulated and reveal a novel mode of expression for a pathogenesis-related gene during the hypersensitive response and development. Mol. Plant-Microbe Interact. 10:624-634. https://doi.org/10.1094/MPMI.1997.10.5.624
  55. Utkhede, R. S. and Mathur, S. 2006. Preventive and curative biological treatments for control of Botrytis cinerea stem canker of greenhouse tomatoes. BioControl 51:363-373. https://doi.org/10.1007/s10526-005-4239-5
  56. Vicedo, B., Flors, V., de la O Leyva, M., Finiti, I., Kravchuk, Z., Real, M. D., Garcia-Agustin, P. and Gonzalez-Bosch, C. 2009. Hexanoic acid-induced resistance against Botrytis cinerea in tomato plants. Mol. Plant-Microbe Interact. 22:1455-1465. https://doi.org/10.1094/MPMI-22-11-1455
  57. Williamson, B., Tudzynski, B., Tudzynski, P. and van Kan, J. A. L. 2007. Botrytis cinerea: the cause of grey mould disease. Mol. Plant Pathol. 8:561-580. https://doi.org/10.1111/j.1364-3703.2007.00417.x
  58. Yu, P.-L., Chen, L.-H. and Chung, K.-R. 2016. How the pathogenic fungus Alternaria alternata copes with stress via the response regulators SSK1 and SHO1. PLoS ONE 11:e0149153. https://doi.org/10.1371/journal.pone.0149153