DOI QR코드

DOI QR Code

Effect of geography and altitude on the community characteristics of epigeic spiders in rice field levees

지형 및 고도에 따른 토양성 논거미 군집특성

  • Eo, Jinu (National Institute of Agricultural Sciences, RDA) ;
  • Kim, Myung-Hyun (National Institute of Agricultural Sciences, RDA) ;
  • Kim, Min-Kyeong (National Institute of Agricultural Sciences, RDA) ;
  • Choi, Soon-Kun (National Institute of Agricultural Sciences, RDA)
  • 어진우 (농촌진흥청 국립농업과학원 기후변화평가과) ;
  • 김명현 (농촌진흥청 국립농업과학원 기후변화평가과) ;
  • 김민경 (농촌진흥청 국립농업과학원 기후변화평가과) ;
  • 최순군 (농촌진흥청 국립농업과학원 기후변화평가과)
  • Received : 2020.10.18
  • Accepted : 2020.12.02
  • Published : 2020.12.31

Abstract

This study investigated the effect of geography and altitude on epigeic spider communities in rice field levees in Jeollabuk-do. Spider communities in the mountainous and plain areas were compared to determine the effect of geography on the cultivation periods. The effect of altitude was compared between the Jeongeup and Jangsu areas during non-cultivation periods. Analysis using nMDS (non-metric multidimensional scaling), MRPP (multiple response permutation procedure), and ANOSIM (analysis of similarity) revealed differences in spider community structures between the two types of study areas. Lycosidae predominated at the family level, and its abundance was greater in the mountainous area than in the plains area. The total abundance did not differ between the two areas with different altitudes, but the abundance of three Pardosa species was greater at lower altitudes than at higher altitudes. Geography and altitude had a minimal effect on species richness and diversity indices at the community level. However, several Lycosidae species showed species-specific responses to both geography and altitude in the rice fields.

지형과 고도가 논둑에 서식하는 토양성거미의 군집과 다양성에 미치는 영향을 조사하였다. 지형의 영향평가를 위해 벼재배기에 산간지와 평야지에서 비교한 결과 거미의 군집구조가 달랐으며 발생밀도는 산간지보다 평야지에서 높았다. 늑대거미과가 가장 우점하였으며 이사고늑대거미(P. isago)의 발생밀도는 산간지보다 평야지에서 높았다. 거미군집의 발생은 국지(100 km2) 및 지역(1,000 km2) 범위에서 유사하였다. 고도의 영향과 관련하여 휴한기에 지형이 유사한 장수와 정읍 지역을 비교한 결과 발생밀도는 지역 간 차이가 없었으나, 긴마디늑대거미속(Pardosa spp.) 3종의 발생밀도는 정읍에서 높았다. 이러한 결과는 지형과 고도가 군집 수준에서 토양성 논거미의 다양성지수에 미치는 영향은 크지 않으나, 종 수준에서 논에 의존적인 늑대거미과의 우점종에 영향을 줄 수 있다는 것을 보여준다.

Keywords

Acknowledgement

This study was carried out with the support of "Research Program for Agricultural Science & Technology Development (Project No. PJ01507302)", National Institute of Agricultural Sciences, Rural Development Administration, Republic of Korea.

References

  1. Amano T, Y Kusumoto, H Okamura, YG Baba, K Hamasaki, K Tanaka and S Yamamoto. 2011. A macro-scale perspective on within-farm management: how climate and topography alter the effect of farming practices. Ecol. Lett. 14:1263-1272. https://doi.org/10.1111/j.1461-0248.2011.01699.x
  2. Baba YG and K Tanaka. 2016. Factors affecting abundance and species composition of generalist predators (Tetragnatha spiders) in agricultural ditches adjacent to rice paddy fields. Biol. Control 103:147-153. https://doi.org/10.1016/j.biocontrol.2016.09.004
  3. Barton PS, SA Cunningham, AD Manning, H Gibb, DB Lindenmayer and RK Didham. 2013. The spatial scaling of beta diversity. Global Ecol. Biogeogr. 22:639-647. https://doi.org/10.1111/geb.12031
  4. Chatzaki M, P Lymberakis, G Markakis and M Mylonas. 2005. The distribution of ground spiders (Araneae, Gnaphosidae) along the altitudinal gradient of Crete, Greece: Species richness, activity and altitudinal range. J. Biogeogr. 32:813-831. https://doi.org/10.1111/j.1365-2699.2004.01189.x
  5. Choi S, N Kim, B Shin, J Lee and B Jang. 2019. Trend of temporal change in moth communities inforests of the agricultural landscape of southwestern South Korea. Korean J. Environ. Biol. 37:426-432. https://doi.org/10.11626/KJEB.2019.37.3.426
  6. Clarke KR. 1993. Non-parametric multivariate analyses of changes in community structure. Austral Ecol. 18:117-143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x
  7. Clough K, A Kruess, D Kleijn and T Tscharntke. 2005. Spider diversity in cereal fields: comparing factors at local, landscape and regional scales. J. Biogeogr. 32:2007-2014. https://doi.org/10.1111/j.1365-2699.2005.01367.x
  8. Drapela T, T Frank, X Heer, D Moser and JG Zaller. 2011. Landscape structure affects activity density, body size and fecundity of Pardosa wolf spiders (Araneae: Lycosidae) in winter oilseed rape. Eur. J. Entomol. 108:609-614. https://doi.org/10.14411/eje.2011.079
  9. Fielding CA, JB Whittaker, FEL Butterfield and JC Coulson. 1999. Predicting responses to climate change: the effect of altitude and latitude on the phenology of the Spittlebug Neophilaenus lineatus. Funct. Ecol. 13:65-73. https://doi.org/10.1046/j.1365-2435.1999.00009.x
  10. Foord SH and AS Dippenaar-Schoeman. 2016. The effect of elevation and time on mountain spider diversity: a view of two aspects in the Cederberg mountains of South Africa. J. Biogeogr. 43:2354-2365. https://doi.org/10.1111/jbi.12817
  11. Fuller L, A Oxbrough, T Gittings, S Irwin, TC Kelly and J O'Halloran. 2014. The response of ground-dwelling spiders (Araneae) and hoverflies (Diptera: Syrphidae) to afforestation assessed using within-site tracking. Forestry 87:301-312. https://doi.org/10.1093/forestry/cpt049
  12. Hein N, H Feilhauer, J Loffler and O Finch. 2015. Elevational variation of reproductive traits in five Pardosa (Lycosidae) species. Arct. Antarct. Alp. Res. 47:473-479. https://doi.org/10.1657/AAAR0013-111
  13. Hodkinson ID. 2005. Terrestrial insects along elevation gradients: Species and community responses to altitude. Biol. Rev. 80:489-513. https://doi.org/10.1017/S1464793105006767
  14. Ishijima C, A Taguchi, M Takagi, T Motobayashi, M Nakai and Y Kunimi. 2006. Observational evidence that the diet of wolf spiders (Araneae: Lycosidae) in paddies temporarily depends on dipterous insects. Appl. Entomol. Zool. 41:195-200. https://doi.org/10.1303/aez.2006.195
  15. Kim N, S Choi and J Lee. 2018. Spatio-temporal changes of beetles and moths by habitat types in agricultural landscape. Korean J. Environ. Biol. 36:180-189. https://doi.org/10.11626/KJEB.2018.36.2.180
  16. Kim ST and JS Yoo. 2019. Two newly recorded wolf spiders with one new species (Araneae, Lycosidae) from Korea. J. Species Res. 8:283-287.
  17. Kobayashi T, M Takada, S Takagi, A Yoshioka and I Washitani. 2011. Spider predation on a mirid pest in Japanese rice fields. Basic Appl. Ecol. 12:532-539. https://doi.org/10.1016/j.baae.2011.07.007
  18. Kwon T, CM Lee, TW Kim, S Kim and JH Sung. 2014. Prediction of abundance of forest spiders according to climate warming in South Korea. J. Asia-Pac. Biodivers. 7:e133-e155. https://doi.org/10.1016/j.japb.2014.04.002
  19. Lambeets K, ML Vandegehuchte, JP Maelfait and D Bonte. 2008. Understanding the impact of flooding on trait-displacements and shifts in assemblage structure of predatory arthropods on river banks. J. Anim. Ecol. 77:1162-1174. https://doi.org/10.1111/j.1365-2656.2008.01443.x
  20. Lawrence KL and DH Wise. 2000. Spider predation on forest-floor Collembola and evidence for indirect effects on decomposition. Pedobiologia 44:33-39. https://doi.org/10.1078/S0031-4056(04)70026-8
  21. Lawton JH, M MacGarvin and PA Heads. 1987. Effects of altitude on the abundance and species richness of insect herbivores of bracken. J. Anim. Ecol. 56:147-160. https://doi.org/10.2307/4805
  22. Lee S, M Kim, J Eo, YJ Song and ST Kim. 2019. Comparative analysis of terrestrial arthropod community and biomass in differently managed rice fields in Korea. Korean J. Environ. Biol. 37:317-334. https://doi.org/10.11626/KJEB.2019.37.3.317
  23. Loboda S and CM Buddle. 2018. Small- to large-scale patterns of ground-dwelling spider (Araneae) diversity across northern Canada. FACETS 3:880-895. https://doi.org/10.1139/facets-2018-0007
  24. Luczak J. 1979. Spiders in agrocoenoses. Pol. Ecol. Stud. 5:151-200.
  25. McCoy ED. 1990. The distribution of insects along elevational gradients. Oikos 58:313-322. https://doi.org/10.2307/3545222
  26. Namkung J. 2001. The Spiders of Korea. Kyo-Hak Publishing Com. Seoul.
  27. Nyffeler M, WL Sterling and DA Dean. 1994. Insectivorous activities of spiders in United States field crops. J. Appl. Entomol. 118:113-128. https://doi.org/10.1111/j.1439-0418.1994.tb00787.x
  28. Oleszczuk M, M Ulikowska and K Kujawa. 2010. Effect of distance from forest edge on the distribution and diversity of spider webs in adjacent maize field. Pol. J. Ecol. 58:759-768.
  29. Oberg S, B Ekbom and R Bommarco. 2007. Influence of habitat type and surrounding landscape on spider diversity in Swedish agroecosystems. Agric. Ecosyst. Environ. 122:211-219. https://doi.org/10.1016/j.agee.2006.12.034
  30. Otto C and BS Svensson. 1982. Structure of communities of ground-living spiders along altitudinal gradients. Ecography 5:35-47. https://doi.org/10.1111/j.1600-0587.1982.tb01015.x
  31. Paik KY and JS Kim. 1979. Survey on the spider-fauna and their seasonal fluctuation in paddy fields in Taegu, Korea. Korean J. Plant Prot. 12:125-130.
  32. Pearce JL and LA Venier. 2006. The use of ground beetles (Coleoptera: Carabidae) and spiders (Araneae) as bioindicators of sustainable forest management: A review. Ecol. Indic. 6:780-793. https://doi.org/10.1016/j.ecolind.2005.03.005
  33. Rahbek C. 1995. The elevational gradient of species richness: A uniform pattern? Ecography 18:200-205. https://doi.org/10.1111/j.1600-0587.1995.tb00341.x
  34. Schmidt MH, I Roschewitz, C Thies and T Tscharntke. 2005. Differential effects of landscape and management on diversity and density of ground-dwelling farmland spiders. J. Appl. Ecol. 42:281-287. https://doi.org/10.1111/j.1365-2664.2005.01014.x
  35. Stenchly K, Y Clough and T Tscharntke. 2012. Spider species richness in cocoa agroforestry systems, comparing vertical strata, local management and distance to forest. Agric. Ecosyst. Environ. 149:189-194. https://doi.org/10.1016/j.agee.2011.03.021
  36. Symondson WOC, KD Sunderland and MH Greenstone. 2002. Can generalist predators be effective biocontrol agents? Annu. Rev. Entomol. 47:561-594. https://doi.org/10.1146/annurev.ento.47.091201.145240
  37. Togashi I and J Taka. 1991. Spider fauna occurring in paddy fields in Ishikawa Prefecture. Acta Arachnol. 40:61-67. https://doi.org/10.2476/asjaa.40.61
  38. Uetz GW and JD Unzicker. 1976. Pitfall trapping in ecological studies of wandering spiders. J. Arachnol. 3:101-111.
  39. Waide RB, MR Willig, CF Steiner, G Mittelbach, L Gough, SI Dodson, GP Grundy and S Harden. 2009. Evidence of a latitudinal gradient in spider diversity in Australian cotton. Austral Ecol. 34:10-23. https://doi.org/10.1111/j.1442-9993.2008.01874.x
  40. Weeks RD and TO Holtzer. 2000. Habitats and season in structuring ground-dwelling spider (Araneae) communities in a shortgrass steppe ecosystem. Environ. Entomol. 29:1164-1172. https://doi.org/10.1603/0046-225X-29.6.1164
  41. Wise DH. 2004. Wandering spiders limit densities of a major microbe-detrivore in the forest-floor food web. Pedobiologia 48:181-188. https://doi.org/10.1016/j.pedobi.2003.12.001
  42. Wolda H. 1987. Altitude, habitat and tropical insect diversity. Biol. J. Linn. Soc. 30:313-323. https://doi.org/10.1111/j.1095-8312.1987.tb00305.x
  43. Yoo JS, S Lee, J Lee, JS Im and ST Kim. 2014. Description of two wolf spiders (Araneae: Lycosidae) from Korea. J. Forest Environ. Sci. 30:30-35. https://doi.org/10.7747/JFS.2014.30.1.30