DOI QR코드

DOI QR Code

Studies on Efficient Extraction of Limonene from Citron and Immune-modulation Activity for Development of Environmentally Friendly Material

친환경 소재 개발을 위한 유자에서의 효율적 Limonene 추출 및 면역기능 조절활성에 관한 연구

  • 안종호 (한경대학교 동물생명융합학부 생물산업응용전공) ;
  • 임현희 (수원축산농협 안산연합사료) ;
  • 황성구 (한경대학교 동물생명융합학부 동물자원과학전공) ;
  • 남인식 (한경대학교 동물생명융합학부 생물산업응용전공, 고품질농축산생산기술연구 센터)
  • Received : 2020.04.17
  • Accepted : 2020.09.14
  • Published : 2020.11.30

Abstract

The objectives of this study were to find out the best condition of extracting methods of limonene from citron and to determine effects of limonene on immune modulation activity by measuring cytokine secretion using RAW 264.7 mouse macrophage cells. When distilled water was used as a solvent instead of organic solvents to extract limonene from citron, addition of refluxing process to simultaneous steam distillation extraction method was found to be much effective in extracting limonene. However, it required longer extraction time than using other organic solvents. Limonene extracts showed increased IL-β and IL-6 but decreased the TNF-α gene expression in limonene concentration dependant manner. However oral administration of limonene extracts to mice did not influence significantly compared to control in in vivo experiment. It might be due to that the mice were kept in well controlled and complete environment. Limonene, a natural material from citron has been approved to have a immune-modulation activity in the present study and have a potential as a feed additive that is environmentally friendly and no harmful. Further study with protected limonene, for example, for the protection of limonene from oxidation or bypass the ruminal degradation in order consequently to increase immune-modulation activity might be useful as a further research.

지금까지 유자에서 추출한 Limonene은 항균활성 및 항산화 활성이 높은 것으로 알려져 왔으나, 면역능력 조절능력에 대한 연구가 부재하여 본 연구에서는 유자에서 Limonene 추출의 최적조건 탐색 및 대식세포와 마우스의 혈청 내 cytokine 분비능을 조사하였다. 추출의 최적조건 탐색 실험에서는 증류수를 이용한 연속증류추출법의 경우가 refluxing이라는 과정을 더해 줬을 때 다른 추출법보다 시간이 다소 오래 소요되는 단점은 있으나 용매를 이용하지 않고 증류수만 이용하여도 추출 후 Limonene의 회수율을 높일 수 있기에 편리하고 경제성이 뛰어난 추출법이라 판단되었다. 마우스의 대식세포를 이용한 in vitro 실험에서는 Limonene 처리에 의한 대식세포증식활성이 증가되는 경향을 보였으며 세포증식활성 관련 유전자 발현도 Limonene 추출물 처리에 의해 증가하였다. 마우스를 이용한 in vivo 실험에서는 대조군에 비해 사료섭취량이 다소 감소하는 경향을 나타내었으며 이 결과가 체중증가량에 반영된 것으로 나타났다. 이것은 Limonene 추출물을 21일간 직접 경구 투여한 것이 위내 자극을 유도하였을 수도 있다고 판단되었다. 한편, 마우스에 면역자극을 유도하지 않은 조건하에서 혈중 IL-1β이 Limonene 급여 농도 의존적으로 증가한 것으로 나타나 In vitro 결과를 잘 반영해 주었다. 이러한 연구 결과를 바탕으로 Limonene을 다른 영양성분과의 결합 등을 유도한 by-pass Limonene을 제조하여 면역기능 조절활성을 유도할 가능성 등의 연구가 더욱 필요하다고 사료된다. 그러나 본 연구를 통해 유자추출물인 Limonene의 면역기능 조절활성을 갖는 것이 확인됨으로서 유자추출물의 친환경 사료첨가제 소재로서 개발 가능성이 제시되었다.

Keywords

References

  1. Araujo, A. C. J., P. R. Freitas, C. R S. Barbosa, D. F. Muniz, J. E. Rocha, A. C. A. Silva, C. D. M. Oliveira-Tintino, J. R. Filho, L. E. Silva, C. Confortin, W Amaral, C. Deschamps, J. M. Barbosa-Filho, N. T. R. Lima, S. R. Tintino, and H. D. M. Coutinho. 2020. GC-MS-FID characterization and antibacterial activity of the mikaniacordifolia essential oil and limonene against MDR strains. Food Chem. Toxicol. 136: 1-4.
  2. Boubaker, H., H. Karim, F. Msanda, E. H. Boudyach, and A. B. Aoumar. 2019. Study of essential oil composition and antifungal activity of Lavandual mairei, L. dentata and Tetraclinis articulata. J. Appl. Sci. 19: 544-550.
  3. Caccioni, D. R. L. and M. Guizzardi. 1994. Inhibition of germination and growth of fruit and vegetable post-harvest pathogenic fungi by essential oil components. J. Essen. Oil Res. 6: 173-179.
  4. Caccioni, D. R. L., S. G. Deans, and G. Ruberto. 1995. Inhibitory effect of citrus oil components on Penicilliumitalicum and P. digitatum. Petria 5: 177-182.
  5. Crowell, P. L., S. Lin, and M. N. Vedejs. 1992. Identification of metabolites of the antitumor agent d-limonene capable of inhibiting protein isoprenylation and cell growth. Cancer Chemother. Pharmacol. 31: 205-12.
  6. Deans, S. G. 1991. Evaluation of antimicrobial activity of essential (volatile) oils. In: Linskens, H. F., Jackson, J. F. (Eds.), Modern Methods of Plant Analysis. New series, Vol. 12, Essential Oils and Waxes. Springer-Verlag, Berlin. pp. 310-320.
  7. Doughari, J. H. and M. J. Bazza. 2020. Phytochemistry, GC-MS analysis, antioxidant and antibacterial potentials of limonene isolated from pericarp of citrus syneresis. Int. J. Microb. Biotech. 5: 22-27.
  8. Elakovich, S. D. 1988. Terpenoids as models for new agrochemicals. In: Cutler, H.G. (Ed.), Biologically active natural products-potential use in agriculture. American Chemical Society, Symposium Series 380, Washington D.C. pp. 250-261.
  9. French, R. C. 1985. The bio-regulatory action of flavor components on fungal spores and other propgules. Ann. Rev. Phytopathol. 23: 173-199.
  10. Gomes, J., J. Barbosa, and P. Teixeira. 2019. Natural antimicrobial agents as an alternative to chemical antimicrobial in the safety and preservation of food products. Curr. Chem. Biol. 13: 25-37.
  11. He, D. Y. and S. M. Dai. 2011. Anti-inflammatory and immunomodulatory effects of paeonia lactiflora pall., a traditional chinese herbal medicine. Front Pharmacol. 2: 1-5.
  12. Hovi, M., A. Sundrum, and S. M. Thamsborg. 2003. Animal health and welfare in organic livestock production in Europe: current state and future challenges. Livest. Prod. Sci. 80: 41-53.
  13. Jing, L., Y. Zhang, S. Fan, M. Gu, Y. Gu, X. Lu, C. Huang, and Z. Zhou. 2013. Preventive and ameliorating effects of citrus D-limonene on dyslipidemia and hyperglycemia in mice with high-fatdiet-induced obesity. Euro. J. Pharmacol. 715: 46-55.
  14. Kesterson, J. W., R. Hendrickson, and R. J. Braddock. 1971. Florida citrus oil. Technical Bulletin 749, University of Florida. pp. 3-174.
  15. Kusunose, H. and M. Sawamura. 1980. Aroma constituents of some sour citrus oils. J. Food Sci. Tech. 27: 517-523.
  16. Nam, I. S. 2001. Development of feed additives using natural antibiotic material of citrus junos produced in Korea. A thesis for a Master degree, Hankyong National University, Korea.
  17. Nam, I. S., P. C. Garnsworthy, and J. H. Ahn. 2006. Supplementation of essential oil extracted from citrus peel to animal feeds decreases microbial activity and aflatoxin contamination without disrupting in vitro ruminal fermentation. Asian-Aust. J. Anim. Sci. 11: 1617-1622.
  18. Ohta, H. and Y. Osajima. 1983. Glass capillary gas chromatographic analysis of oil components extracted from (Citrus junos) juice. J. Chrom. 268: 336-340.
  19. Platis, D. P., C. D. Anagnostopoulos, A. D. Tsaboula, G. C. Menexes, K. L. Kalburtji, and A. P. Mamolos. 2019. Energy analysis, and carbon and water footprint for environmentally friendly farming practices in agroecosystem and agroforestry. Sustain. 11: 1-8.
  20. Roberto, D., P. Micucci, T. Sebastian, F. Graciela, and C. Anesini. 2009. Antioxidant activity of limonene on normal murine lymphocytes: relation to H2O2 modulation and cell proliferation. Basic Clin. Pharmacol. Toxicol. 106: 38-44.
  21. SAS. 2001. SAS/STAT® Software for PC. SAS Institute Inc., Cary, NC, USA.
  22. Shinoda, N., M. Shiga, and K. Nishimura. 1970. Constituents of yuzu (Citrus Junos) oil. Agri. Bio. Chem. 34: 234-239.
  23. Sotomayor, M. A., J. K. Reyes, L. Restrepo, C. Diminguez-Borbor, M. Maldonado, and B. Bayot. 2019. Efficacy assessment of commercially available natural products and antibiotic, commonly used for mitigation of pathogenic Vibrio outbreaks in Ecuadorian Penaeus (Litipenaeus) vannamei hacheries. PLOS. 30: 1-19.
  24. Vigushin, D. M., G. K. Poon, A. Boddy, J. English, G. W. Halbert, C. Pagonis, M. Jarman, and R. C Coombes. 1998. Phase I and pharmacokinetic study of D-limonene in patients with advanced cancer. Cancer Research Campaign Phase I/II Clinical Trials Committee. Cancer Chemother Pharmacol. 42: 111-7.
  25. Yoon, W. J., N. H. Lee, and C. G. Hyun. 2010. Limonene suppresses lipopolysaccharide-induced production of nitric oxide, prostaglandin E2, and pro-inflammatory cytokines in RAW 264.7 macrophages. J. Oleo Sci. 59: 415-421.