DOI QR코드

DOI QR Code

Performance Characteristics of Lead Acid Battery with the Contents of Sodium Perborate Tetrahydrate (SPT) in Positive Plate Active Material

과붕산나트륨 양극 활물질 첨가에 따른 차량용 납산배터리 성능 특성

  • Received : 2020.06.01
  • Accepted : 2020.07.30
  • Published : 2020.08.27

Abstract

The performance characteristics of a lead acid battery are investigated with the content of Sodium Perborate Tetrahydrate (SPT, NaBO3·4H2O) in a positive plate active material. SPT, which reacts with water to form hydrogen peroxide, is applied as an additive in the positive plate active material to increase adhesion between the substrate (positive plate) and the active material; this phenomenon is caused by a chemical reaction on the surface of substrate. A positive plate with the increasing content of SPT is prepared to compare its properties. It is confirmed that the oxide layer increases at the interface between the substrate and the active material with increasing content of SPT; this is proven to be an oxide layer through EDS analysis. Battery performance is confirmed: when SPT content is 2.0 wt%, the charging acceptance and high rate discharge properties are improved. In addition, the lifetime performance according to the Standard of Battery Association of Japan (SBA) S0101 test is improved with increasing content of SPT.

Keywords

References

  1. K. Kawajiri, M. Kobayashi and K. Sakamoto, J. Cleaner Prod., 253, 119805 (2020). https://doi.org/10.1016/j.jclepro.2019.119805
  2. C. Pillot, J. Catal., EVS27 International Battery, Hybrid and Fuel cell Electric Vehicle Symposium (2013).
  3. J. Yu, S. Kim, C. Gwon and J. Bang, US Patent Application Publication, US2012/0133500 A1 (2012).
  4. K. Sawai, T. Ohmae, H. Suwaki, M. Shiomi and S. Osumi, J. Power Sources, 174, 54 (2007). https://doi.org/10.1016/j.jpowsour.2007.04.033
  5. D. Pavlov, V. Naidenov, Y. Milusheva, S. Vassilev, T. Shibahara and M. Tozuka, J. Energy Storage, 17, 336 (2018). https://doi.org/10.1016/j.est.2018.03.021
  6. S. Zhang, H. Zhang, J. Cheng, W. Zhang, G. Cao and H. Zhao, J. Power Sources, 334, 31 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.097
  7. E. Ebner, D. Burow, A. Borger, M. Wark, P. Atanassova and J. Valenciano, J. Power Sources, 239, 483 (2013). https://doi.org/10.1016/j.jpowsour.2013.03.124
  8. M. Fernandez, J. Valenciano, F. Trinidad and N. Munoz, J. Power Sources, 195, 4458 (2010). https://doi.org/10.1016/j.jpowsour.2009.12.131
  9. N. Sugumaran, P. Everill, S. W. Swogger and D. P. Dubey J. Power Sources, 279, 281 (2015). https://doi.org/10.1016/j.jpowsour.2014.12.117
  10. A. Moncada, S. Piazza, C. Sunseri and R. Inguanta, J. Power Sources, 275, 181 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.189
  11. M. Foudia, M. Matrakova and L. Zerroual, J. Power Sources, 279, 146 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.008
  12. M. A. Deyab, J. Power Sources, 390, 176 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.053
  13. R. J. Ball, R. Kurian R. Evans and R. Stevens, J. Power Sources, 111, 23 (2002). https://doi.org/10.1016/S0378-7753(02)00221-5
  14. I. Kurisawa, M. Shiomi, S. Ohsumi, M. Iwata and M. Tsubota, J. Power Sources, 95, 125 (2001). https://doi.org/10.1016/S0378-7753(00)00641-8
  15. R. D. Prengaman, J. Power Sources, 95, 224 (2001). https://doi.org/10.1016/S0378-7753(00)00620-0
  16. G. Y. Yuksel, P. Sayan, S. Titiz and A. N. Bulutcu, J. Cryst. Growth, 160, 370 (1996). https://doi.org/10.1016/0022-0248(95)00568-4
  17. D. Pavlov, M. Dimitrov, T. Rogachev and L. Bogdanova, J. Power Sources, 114, 137 (2003). https://doi.org/10.1016/S0378-7753(02)00593-1
  18. J. P. Mckinley, M. K. Dlaska and R. Baston, J. Power Sources, 107, 180 (2002). https://doi.org/10.1016/S0378-7753(01)01003-5