DOI QR코드

DOI QR Code

Prediction of Structural Behavior of FRP Rebar Reinforced Concrete Slab based on the Definition of Limit State

한계상태 정의에 따른 FRP Rebar 보강 콘크리트 슬래브의 구조거동 예측

  • Oh, Hongseob (Gyeongnam National University of Science and Technology) ;
  • Kim, Younghwan (Gyeongnam National University of Science and Technology) ;
  • Jang, Naksup (Gyeongnam National University of Science and Technology)
  • 오홍섭 (경남과학기술대학교 토목공학과) ;
  • 김영환 (경남과학기술대학교 토목공학과) ;
  • 장낙섭 (경남과학기술대학교 토목공학과)
  • Received : 2019.03.22
  • Accepted : 2020.06.17
  • Published : 2020.08.01

Abstract

The failure mode of concrete reinforced with FRP is defined as the concrete crushing and the fiber rupture and the definition of limit state is a slightly different according to the design methods. It is relatively difficult to predict of FRP reinforced concrete because the mechanical properties of fibers are quite depending on its of fibers. The design code by ACI440 committee, which has been developed mainly on GFRP having low modulus of elasticity, is widely used, but the applicability on other FRPs of this code has not been sufficiently verified. In addition, the ultimate and serviceability limit state based on the ACI440 are comparatively difficult to predict the behavior of member with the 0.8~1.2 𝜌b because crushing and rupturing failure can be occurred simultaneously is in this region of reinforcement ratio, and predicted deflection is too sensitive according to the loading condition. Therefore, in this study, reliability and convenience of the prediction of structural performance by design methods such as ACI440 and MC90 concept, respectively, were examined through the experimental results and literature review of the beam and slab with the reinforcement ratio of 0.8 ~ 1.4. As a result of the analysis, it can be applied to the FRP reinforced structure in the case of the simple moment-curvature formula (LIM-MC) of Model Code, and the limit state design method based on the EC2 is more reliable than the ultimate strength design method.

FRP로 보강된 콘크리트 부재의 파괴형태는 콘크리트 압괴와 섬유 파단으로 정의되며, 설계방법에 따라 한계상태를 조금씩 다르게 정의하고 있다. FRP 보강재는 섬유에 따라 성능이 상이하기 때문에 사용상태와 극한상태의 성능을 예측하는 것이 상대적으로 까다롭다. 특히 많이 사용되고 있는 ACI 440의 기준은 주로 저탄성계수를 갖는 GFRP를 중심으로 개발되었기 때문에 다른 섬유에 대한 적용성이 충분히 검증되지 않은 상태이다. 또한 ACI440의 휨한계상태는 보강비에 따라 압괴와 파단이 동시에 발생하는 천이영역이 상대적으로 크기 때문에 균형보강비에서의 거동예측이 상대적으로 어렵고, 사용성 예측 방법이 하중조건에 따라 민감하기 때문에 상대적으로 복잡한 단점이 있다. 따라서 본 연구에서는 0.8~1.2 𝜌b의 보강비를 갖는 슬래브의 실험결과와 문헌고찰을 통하여 설계방법별 거동예측의 신뢰성과 편이성을 고찰하였다. 해석결과 Model Code의 모멘트 곡률식(LIM-MC) 간략식의 경우 FRP 보강구조물에도 충분히 적용할 수 있는 것으로 분석되었으며, EC2에 기반한 한계상태 설계법이 상대적로 극한강도설계법보다 신뢰성 있는 결과를 나타내었다.

Keywords

References

  1. Abdalla, H. A. (2002). "Evaluation of deflection in concrete members reinforced with fibre reinforced polymer (FRP) bars." Composite Structures, Vol. 56, No. 1, pp. 63-71. https://doi.org/10.1016/S0263-8223(01)00188-X
  2. Acciai, A., D'Ambrisi, A., De Stefano, M., Feo, L., Focacci, F. and Nudo, R. (2016). "Experimental response of FRP reinforced members without transverse reinforcement: Failure modes and design issues." Composites Part B: Engineering, Vol. 89, pp. 397-407. https://doi.org/10.1016/j.compositesb.2016.01.002
  3. ACI-440.1R (2015). Guide for the design and construction of structural concrete reinforced with fiber-reinforced polymer (FRP) bars, Farmington Hills, MI.
  4. Aiello, M. A. and Ombres, L. (2000). "Load-deflection analysis of FRP reinforced concrete flexural members." Journal of Composites for Construction, Vol. 4, No. 4, pp. 164-171. https://doi.org/10.1061/(ASCE)1090-0268(2000)4:4(164)
  5. Benmokrane, B., Elgabbas, F., Ahmed, E. A. and Cousin, P. (2015a). "Characterization and comparative durability study of glass/vinylester, basalt/vinylester, and basalt/epoxy FRP bars." Journal of Composites for Construction, Vol. 19, No. 6, 04015008. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000564
  6. Benmokrane, B., Ali, A. H., Mohamed, H. M., Robert, M. and ElSafty, A. (2015b). "Durability performance and service life of CFCC tendons exposed to elevated temperature and alkaline environment." Journal of Composites for Construction, Vol. 20, No. 1, 04015043. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000606
  7. Bischoff, P. H. (2005). "Reevaluation of deflection prediction for concrete beams reinforced with steel and fiber reinforced polymer bars." Journal of Structural Engineering, Vol. 131, No. 5, pp. 752-767. https://doi.org/10.1061/(asce)0733-9445(2005)131:5(752)
  8. Bischoff, P. H. and Gross, S. P. (2010). "Equivalent moment of inertia based on integration of curvature." Journal of Composites for Construction, Vol. 15, No. 3, pp. 263-273. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000164
  9. Bischoff, P. H. and Scanlon, A. (2007). "Effective moment of inertia for calculating deflections of concrete members containing steel reinforcement and fiber-reinforced polymer reinforcement." ACI Structural Journal, Vol. 104, No. 1, pp. 68-75.
  10. BS EN 1992, Eurocode 2 (2004). Design of concrete structures.
  11. Canadian Standards Association (2012). Design and construction of building components with fibre-reinforced polymers (No. 2). Canadian Standards Association.
  12. CEB-FIB (2010). CEB-FIB model code 2010-final draft. Thomas Thelford, Lausanne, Switzerland.
  13. Choi, S. W., Yang, J. H. and Kim, W. (2010). "Influence of tension stiffening effect on deflection and crack width in RC members." Journal of the Korea Concrete Institute, Vol. 22, No. 6, pp. 761-768 (in Korean). https://doi.org/10.4334/JKCI.2010.22.6.761
  14. Docevska, M., Arangjelovski, T., Markovski, G. and Nakov, D. (2018). "Numerical and analytical model for serviceability limit states of RC elements." Gradevinar, Vol. 70, No. 11, pp. 943-952.
  15. Fib Bulletin 40 (2007). FRP reinforcement in RC structures, TG9.3;
  16. Fib Bulletin 50 (2010). Bulletin: Structural concrete: textbook on behaviour, design and performance; updated knowledge of the CEB/FIB Model Code 1990.
  17. Fib Bulletin 51 (2010). Bulletin: Structural concrete: textbook on behaviour, design and performance; updated knowledge of the CEB/FIB Model Code 1990.
  18. Gooranorimi, O., Claure, G., Suaris, W. and Nanni, A. (2018). "Bond-slip effect in flexural behavior of GFRP RC slabs." Composite Structures, Vol. 193, pp. 80-86. https://doi.org/10.1016/j.compstruct.2018.03.027
  19. Gribniak, V., Cervenka, V. and Kaklauskas, G. (2013). "Deflection prediction of reinforced concrete beams by design codes and computer simulation." Engineering Structures, Vol. 56, pp. 2175-2186. https://doi.org/10.1016/j.engstruct.2013.08.045
  20. Kharal, Z. and Sheikh, S. (2017). "Tension stiffening and cracking behavior of glass fiber-reinforced polymer-reinforced concrete." ACI Structural Journal, Vol. 114, No. 2, pp. 299-310. https://doi.org/10.14359/51689420
  21. Ko, S. H. (2014). "Experimental study for GFRP reinforced concrete beams without stirrups." Journal of the Korea Institute for Structural Maintenance and Inspection, Vol. 18, No. 2, pp. 21-29 (in Korean). https://doi.org/10.11112/jksmi.2014.18.2.021
  22. Pecce, M., Manfredi, G. and Cosenza, E. (2000). "Experimental response and code models of GFRP RC beams in bending." Journal of Composites for Construction, Vol. 4, No. 4, pp. 182-190. https://doi.org/10.1061/(ASCE)1090-0268(2000)4:4(182)
  23. Pilakoutas, K., Neocleous, K. and Guadagnini, M. (2002). "Design philosophy issues of fiber reinfored polymer reinforced concrete structures." Journal of Composites for Construction, Vol. 6, Nol. 3, pp. 154-161. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:3(154)