DOI QR코드

DOI QR Code

ON INTEGRAL DOMAINS IN WHICH EVERY ASCENDING CHAIN ON PRINCIPAL IDEALS IS S-STATIONARY

  • Hamed, Ahmed (Department of Mathematics Faculty of Sciences University of Monastir) ;
  • Kim, Hwankoo (Department of Information Security Hoseo University)
  • Received : 2019.10.10
  • Accepted : 2020.04.23
  • Published : 2020.09.30

Abstract

Let D be an integral domain and S a multiplicative subset of D. An ascending chain (Ik)k∈ℕ of ideals of D is said to be S-stationary if there exist a positive integer n and an s ∈ S such that for each k ≥ n, sIk ⊆ In. As a generalization of domains satisfying ACCP (resp., ACC on ∗-ideals) we define D to satisfy S-ACCP (resp., S-ACC on ∗-ideals) if every ascending chain of principal ideals (resp., ∗-ideals) of D is S-stationary. One of main results of this paper is the Hilbert basis theorem for an integral domain satisfying S-ACCP. Also we investigate the class of such domains D and we generalize some known related results in the literature. Finally some illustrative examples regarding the introduced concepts are given.

Keywords

References

  1. H. Ahmed and H. Sana, S-Noetherian rings of the forms A[X] and A[[X]], Comm. Algebra 43 (2015), no. 9, 3848-3856. https://doi.org/10.1080/00927872.2014.924127
  2. H. Ahmed and H. Sana, Modules satisfying the S-Noetherian property and S-ACCR, Comm. Algebra 44 (2016), no. 5, 1941-1951. https://doi.org/10.1080/00927872.2015.1027377
  3. D. D. Anderson and D. F. Anderson, Some remarks on star operations and the class group, J. Pure Appl. Algebra 51 (1988), no. 1-2, 27-33. https://doi.org/10.1016/0022-4049(88)90075-8
  4. D. D. Anderson, D. F. Anderson, and M. Zafrullah, Factorization in integral domains, J. Pure Appl. Algebra 69 (1990), no. 1, 1-19. https://doi.org/10.1016/0022-4049(90)90074-R
  5. D. D. Anderson, D. F. Anderson, and M. Zafrullah, Splitting the t-class group, J. Pure Appl. Algebra 74 (1991), no. 1, 17-37. https://doi.org/10.1016/0022-4049(91)90046-5
  6. D. D. Anderson and T. Dumitrescu, S-Noetherian rings, Comm. Algebra 30 (2002), no. 9, 4407-4416. https://doi.org/10.1081/AGB-120013328
  7. D. D. Anderson, B. G. Kang, and M. H. Park, Anti-Archimedean rings and power series rings, Comm. Algebra 26 (1998), no. 10, 3223-3238. https://doi.org/10.1080/00927879808826338
  8. Z. Bilgin, M. L. Reyes, and Tekir, On right S-Noetherian rings and S-Noetherian modules, Comm. Algebra 46 (2018), no. 2, 863-869. https://doi.org/10.1080/00927872.2017.1332199
  9. T. Dumitrescu, N. Radu, S. I. Al-Salihi, and T. Shah, Some factorization properties of composite domains A + XB[X] and A + XB[[X]], Comm. Algebra 28 (2000), no. 3, 1125-1139. https://doi.org/10.1080/00927870008826885
  10. R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, Inc., New York, 1972.
  11. W. J. Heinzer and D. C. Lantz, ACCP in polynomial rings: a counterexample, Proc. Amer. Math. Soc. 121 (1994), no. 3, 975-977. https://doi.org/10.2307/2160301
  12. K. Hu, H. Kim, F. G. Wang, L. Xu, and D. C. Zhou, On strongly Gorenstein hereditary rings, Bull. Korean Math. Soc. 56 (2019), no. 2, 373-382. https://doi.org/10.4134/BKMS.b180249
  13. H. Kim, M. O. Kim, and J. W. Lim, On S-strong Mori domains, J. Algebra 416 (2014), 314-332. https://doi.org/10.1016/j.jalgebra.2014.06.015
  14. A. Mimouni, TW-domains and strong Mori domains, J. Pure Appl. Algebra 177 (2003), no. 1, 79-93. https://doi.org/10.1016/S0022-4049(02)00171-8
  15. P. Samuel, On unique factorization domains, Illinois J. Math. 5 (1961), no. 1 1-17. http://projecteuclid.org/euclid.ijm/1255629643 https://doi.org/10.1215/ijm/1255629643
  16. F. Wang and H. Kim, Foundations of Commutative Rings and Their Modules, Algebra and Applications, 22, Springer, Singapore, 2016. https://doi.org/10.1007/978-981-10-3337-7
  17. M. Zafrullah, Ascending chain conditions and star operations, Comm. Algebra 17 (1989), no. 6, 1523-1533. https://doi.org/10.1080/00927878908823804