DOI QR코드

DOI QR Code

A micro-computed tomography evaluation of voids using calcium silicate-based materials in teeth with simulated internal root resorption

  • Tek, Vildan (Department of Endodontics, Faculty of Dentistry, Zonguldak Bulent Ecevit University) ;
  • Turker, Sevinc Aktemur (Department of Endodontics, Faculty of Dentistry, Zonguldak Bulent Ecevit University)
  • Received : 2019.09.27
  • Accepted : 2019.10.14
  • Published : 2020.02.29

Abstract

Objectives: The obturation quality of MTA, Biodentine, Total Fill BC root canal sealer (RCS), and warm gutta-percha (WGP) in teeth with simulated internal root resorption (IRR) was evaluated by using micro-computed tomography. Materials and Methods: Standardized IRR cavities were created using 40 extracted maxillary central incisor teeth and randomly assigned into 4 groups (n = 10). IRR cavities were filled with MTA, Biodentine, Total Fill BC RCS (bulk-fill form) and WGP + Total Fill BC RCS. Percentage of voids between resorptive cavity walls and obturation material (external void), and inside the filling materials (internal voids) were measured. Results: Total Fill BC sealer in the bulk-fill form presented significantly highest values of external and internal void percentages (p < 0.05). Biodentine showed a significantly lowest external void percentage (p < 0.05). WGP + Total Fill BC RCS presented significantly lower values of internal void percentages than all groups (p < 0.05), except Biodentine (p > 0.05). Conclusion: None of the filling materials were created void-free obturation in resorption cavities. Biodentine may favor its application in teeth with IRR over Angelus MTA and bulkfill form of Total Fill BC.

Keywords

References

  1. Patel S, Ricucci D, Durak C, Tay F. Internal root resorption: a review. J Endod 2010;36:1107-1121. https://doi.org/10.1016/j.joen.2010.03.014
  2. Rodriguez-Lozano FJ, Garcia-Bernal D, Onate-Sanchez RE, Ortolani-Seltenerich PS, Forner L, Moraleda JM. Evaluation of cytocompatibility of calcium silicate-based endodontic sealers and their effects on the biological responses of mesenchymal dental stem cells. Int Endod J 2017;50:67-76. https://doi.org/10.1111/iej.12596
  3. Ersahan S, Aydin C. Dislocation resistance of iRoot SP, a calcium silicate-based sealer, from radicular dentine. J Endod 2010;36:2000-2002. https://doi.org/10.1016/j.joen.2010.08.037
  4. Zhang W, Li Z, Peng B. Assessment of a new root canal sealer's apical sealing ability. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;107:e79-e82. https://doi.org/10.1016/j.tripleo.2009.02.024
  5. Huffman BP, Mai S, Pinna L, Weller RN, Primus CM, Gutmann JL, Pashley DH, Tay FR. Dislocation resistance of ProRoot Endo Sealer, a calcium silicate-based root canal sealer, from radicular dentine. Int Endod J 2009;42:34-46. https://doi.org/10.1111/j.1365-2591.2008.01490.x
  6. Jainaen A, Palamara JE, Messer HH. Push-out bond strengths of the dentine-sealer interface with and without a main cone. Int Endod J 2007;40:882-890. https://doi.org/10.1111/j.1365-2591.2007.01308.x
  7. Nagas E, Cehreli Z, Uyanik MO, Durmaz V. Bond strength of a calcium silicate-based sealer tested in bulk or with different main core materials. Braz Oral Res 2014;28:1-7.
  8. Topcuoglu HS, Duzgun S, Ceyhanli KT, Akti A, Pala K, Kesim B. Efficacy of different irrigation techniques in the removal of calcium hydroxide from a simulated internal root resorption cavity. Int Endod J 2015;48:309-316. https://doi.org/10.1111/iej.12316
  9. Huang Y, Celikten B, de Faria Vasconcelos K, Ferreira Pinheiro Nicolielo L, Lippiatt N, Buyuksungur A, Jacobs R, Orhan K. Micro-CT and nano-CT analysis of filling quality of three different endodontic sealers. Dentomaxillofac Radiol 2017;46:20170223. https://doi.org/10.1259/dmfr.20170223
  10. Silveira FF, Nunes E, Soares JA, Ferreira CL, Rotstein I. Double 'pink tooth' associated with extensive internal root resorption after orthodontic treatment: a case report. Dent Traumatol 2009;25:e43-e47. https://doi.org/10.1111/j.1600-9657.2008.00755.x
  11. El-Ma'aita AM, Qualtrough AJ, Watts DC. A micro-computed tomography evaluation of mineral trioxide aggregate root canal fillings. J Endod 2012;38:670-672. https://doi.org/10.1016/j.joen.2012.01.009
  12. Sisli SN, Ozbas H. Comparative micro-computed tomographic evaluation of the sealing quality of ProRoot MTA and MTA Angelus apical plugs placed with various techniques. J Endod 2017;43:147-151. https://doi.org/10.1016/j.joen.2016.09.017
  13. Kucukkaya Eren S, Aksel H, Askerbeyli Ors S, Serper A, Kocak Y, Ocak M, Celik HH. Obturation quality of calcium silicate-based cements placed with different techniques in teeth with perforating internal root resorption: a micro-computed tomographic study. Clin Oral Investig 2019;23:805-811. https://doi.org/10.1007/s00784-018-2502-2
  14. Ozturk TY, Guneser MB, Taschieri S, Maddalone M, Dincer AN, Venino PM, Del Fabbro M. Do the intracanal medicaments affect the marginal adaptation of calcium silicate-based materials to dentin? J Dent Sci 2019;14:157-162. https://doi.org/10.1016/j.jds.2019.01.012
  15. Setbon HM, Devaux J, Iserentant A, Leloup G, Leprince JG. Influence of composition on setting kinetics of new injectable and/or fast setting tricalcium silicate cements. Dent Mater 2014;30:1291-1303. https://doi.org/10.1016/j.dental.2014.09.005
  16. Grech L, Mallia B, Camilleri J. Investigation of the physical properties of tricalcium silicate cement-based root-end filling materials. Dent Mater 2013;29:e20-e28. https://doi.org/10.1016/j.dental.2012.11.007
  17. Komabayashi T, Spangberg LS. Comparative analysis of the particle size and shape of commercially available mineral trioxide aggregates and Portland cement: a study with a flow particle image analyzer. J Endod 2008;34:94-98. https://doi.org/10.1016/j.joen.2007.10.013
  18. Biocanin V, Antonijevic đ, Postic S, Ilic D, Vukovic Z, Milic M, Fan Y, Li Z, Brkovic B, đuric M. Marginal gaps between 2 calcium silicate and glass ionomer cements and apical root dentin. J Endod 2018;44:816-821. https://doi.org/10.1016/j.joen.2017.09.022
  19. Gencoglu N, Yildirim T, Garip Y, Karagenc B, Yilmaz H. Effectiveness of different gutta-percha techniques when filling experimental internal resorptive cavities. Int Endod J 2008;41:836-842. https://doi.org/10.1111/j.1365-2591.2008.01434.x
  20. Keles A, Ahmetoglu F, Uzun I. Quality of different gutta-percha techniques when filling experimental internal resorptive cavities: a micro-computed tomography study. Aust Endod J 2014;40:131-135. https://doi.org/10.1111/aej.12043
  21. Lottanti S, Taubock TT, Zehnder M. Shrinkage of backfill gutta-percha upon cooling. J Endod 2014;40:721-724. https://doi.org/10.1016/j.joen.2013.09.043
  22. Keles A, Alcin H, Kamalak A, Versiani MA. Micro-CT evaluation of root filling quality in oval-shaped canals. Int Endod J 2014;47:1177-1184. https://doi.org/10.1111/iej.12269
  23. Ng YL, Mann V, Rahbaran S, Lewsey J, Gulabivala K. Outcome of primary root canal treatment: systematic review of the literature -- Part 2. Influence of clinical factors. Int Endod J 2008;41:6-31. https://doi.org/10.1111/j.1365-2591.2007.01323.x
  24. Bogen G, Kuttler S. Mineral trioxide aggregate obturation: a review and case series. J Endod 2009;35:777-790. https://doi.org/10.1016/j.joen.2009.03.006
  25. Schilder H. Filling root canals in three dimensions. 1967. J Endod 2006;32:281-290. https://doi.org/10.1016/j.joen.2006.02.007