DOI QR코드

DOI QR Code

Genetic and Agronomic Analysis of a Recombinant Inbred Line Population to Map Quantitative Trait Loci for Blast Resistance and Select Promising Lines in Rice

벼 RIL집단의 유전 분석과 농업형질 분석을 통한 도열병 저항성 QTL 탐색 및 유망계통 선발

  • Ha, Su-Kyung (National Institute of Crop Science, Rural Development Administration) ;
  • Jeung, Ji-Ung (National Institute of Crop Science, Rural Development Administration) ;
  • Jeong, Jong-Min (National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Jinhee (National Institute of Crop Science, Rural Development Administration) ;
  • Mo, Youngjun (National Institute of Crop Science, Rural Development Administration)
  • 하수경 (농촌진흥청 국립식량과학원) ;
  • 정지웅 (농촌진흥청 국립식량과학원) ;
  • 정종민 (농촌진흥청 국립식량과학원) ;
  • 김진희 (농촌진흥청 국립식량과학원) ;
  • 모영준 (농촌진흥청 국립식량과학원)
  • Received : 2020.05.10
  • Accepted : 2020.06.18
  • Published : 2020.09.01

Abstract

Koshihikari has been one of the most popular rice cultivars with good eating quality since the 1960s despite its susceptibility to blast disease and lodging. To map the genes controlling blast resistance and to develop promising blast-resistant breeding lines inheriting Koshihikari's high eating quality, a recombinant inbred line (RIL) population was developed from a cross between Koshihikari and a blast resistance donor with early maturity, Baegilmi. A total of 394 Koshihikari × Baegilmi RILs (KBRIL), and the two parents, were evaluated for blast resistance and major agronomic traits including heading date, culm length, panicle length, and tiller number. A linkage map encompassing 1,272.7 cM was constructed from a subset of the KBRIL (n = 142) using 130 single nucleotide polymorphisms. Two quantitative trait loci (QTL) for blast resistance, qBL1.1 harboring Pish/Pi35 and qBL2.1 harboring Pib, were mapped onto chromosomes 1 and 2, respectively. qBL1.1 was detected in both of the experimental sites, Namwon and Jeonju, while qBL2.1 was only detected in Namwon. qBL1.1 and qBL2.1 did not affect agronomic traits, including heading date, culm length, panicle length, and tiller number. From the 394 KBRILs, lines that were phenotypically similar to Koshihikari were selected according to heading date and culm length and were further divided into the following two groups based on blast resistance: Koshishikari-type blast resistant lines (KR, n = 15) and Koshishikari-type blast susceptible lines (KS, n = 15). Although no significant differences were observed in the major agronomic traits between the two groups, the KR group produced a greater mean head rice ratio than the KS group. The present study provides useful materials for developing blast-resistant cultivars that inherit both Koshihikari's high eating quality and Baegilmi's blast resistance.

고시히카리는 도열병과 쓰러짐에 약하지만 밥맛 좋은 쌀로 유명하고, 육성된 지 60년이 넘은 지금까지도 일본에서 가장 많이 재배되는 품종이다. 고시히카리에 도열병에 강하면서 생육이 빠른 백일미를 교배한 RIL집단(KBRIL)에서 도열병 저항성에 대한 유전분석을 수행하여 저항성 유전자의 염색체 상 위치를 규명하고, 고시히카리의 우수한 미질을 보유하면서 도열병에도 강한 계통을 선발하기 위해 본 연구를 수행하였다. 주요 결과는 다음과 같다. 1. 고시히카리×백일미 RIL 394계통과 모·부본의 도열병 저항성(전주, 남원) 및 주요 농업형질을 조사하고, 유전 분석을 위해 사용된 142계통으로 총 130개 SNP 마커, 1,272.7cM의 유전자지도를 작성하였다. 도열병 저항성 QTL 분석 결과 전주에서는 1번 염색체의 qBL1.1이, 남원에서는 전주와 동일한 qBL1.1과 추가로 2번 염색체의 qBL2.1이 탐지되었다. 2. RIL 394계통의 qBL1.1과 qBL2.1 유전자형을 도출하고 각 QTL의 백일미 대립인자 집적에 의한 도열병 저항성 강화 효과를 관찰하였다. 전주에서는 qBL1.1의 경우에만 백일미 대립인자 집적에 의하여 도열병 저항성이 강화되었다. 반면 남원에서는 qBL1.1, qBL2.1 모두 백일미 대립인자가 집적될 때 도열병 저항성이 강화되었다. qBL1.1, qBL2.1은 출수기, 간장, 수장, 수수를 포함한 주요 농업형질에는 영향을 미치지 않았다. 3. 고시히카리×백일미 RIL 394계통 중에서 출수기와 간장을 기준으로 고시히카리와 유사하면서 도열병에 약/강한(KS/KR) 계통과 백일미와 유사하면서 도열병에 강한(BR) 계통을 각 15계통씩 선발하였다. KR 그룹은 완전 미율이 가장 우수하여 밥맛 검정, 수량성 등 추가조사를 통해 고시히카리의 우수한 밥맛을 지니면서 도열병 저항성을 보유한 고품질 밥쌀용 품종개발에 활용할 계획이다. 또한 BR그룹은 미질이 우수하면서 출수가 빠른 고품질 품종 개발에 유용할 것으로 기대된다.

Keywords

References

  1. Araki, E., M. J. T. Yanoria, L. A. Ebron, D. M. Escueta, T. Takai, and Y. Fukuta. 2003. Mapping of a rice blast resistance gene Pish. Breeding Research 5 : 333.
  2. Cho, Y. C., I. S. Choi, M. K. Baek, M. J. T. Yanoria, J. P. Suh, J. H. Roh, Y. G. Kim, K. K. Jena, H. C. Choi, and H. G. Hwang. 2004. Analysis of resistance genes to blast (Magnaporthe Grisea) in the japonica rice cultivar, Ilpumbyeo. The Korean Society of Breeding Science 36 : 81-89.
  3. Churchill, G. A. and R. W. Doerge. 1994. Empirical threshold values for quantitative trait mapping. Genetics 138 : 963-971. https://doi.org/10.1093/genetics/138.3.963
  4. Devi, S. J. S. R., K. Singh, B. Umakanth, B. Vishalakshi, P. Renuka, K. V. Sudhakar, M. S. Prasad, B. C. Viraktamath, V. R. Babu, and M. S. Madhav. 2015. Development and identification of novel rice blast resistant sources and their characterization using molecular markers. Rice Science 22 : 300-308. https://doi.org/10.1016/j.rsci.2015.11.002
  5. Ishizaki, K., T. Hoshi, S. Abe, Y. Sasaki, K. Kobayashi, H. Kasaneyama, T. Matsui, and S. Azuma. 2005. Breeding of blast resistant isogenic lines in rice variety ‘Koshihikari’ and evaluation of their characters. Breeding Science 55 : 371-377. https://doi.org/10.1270/jsbbs.55.371
  6. Jang, Y. J., M. Seo, C. P. Hersh, S. Rhee, Y. Kim, and G. P. Lee. 2019. An evolutionarily conserved non-synonymous SNP in a leucine-rich repeat domain determines anthracnose resistance in watermelon. Theoretical and Applied Genetics 132 : 473-488. https://doi.org/10.1007/s00122-018-3235-y
  7. Jones, J. D. G. and J. L. Dangl. 2006. The Plant Immune System. Nature 444 : 323-329. https://doi.org/10.1038/nature05286
  8. Khush, G. S. and K. K. Jena. 2009. Current status and future prospects for research on blast resistance in rice (Oryza Sativa L.). In: Wang GL., Valent B. (ed.) Advances in Genetics, Genomics and Control of Rice Blast Disease. Dordrecht, Netherlands: Springer Science+Business, pp. 1-10.
  9. Kim, K. B. 2017. Cooking quality of superjami rice according to soaking time. The Korean Foodservice Association 13 : 41-51.
  10. Kitazawa, N., A. Shomura, T. Mizubayashi, T. Ando, K. Nagata, N. Hayashi, A. Takahashi, U. Yamanouchi, and S. Fukuoka. 2019. Rapid DNA-genotyping system targeting ten loci for resistance to blast disease in rice. Breeding Science 69 : 68-83. https://doi.org/10.1270/jsbbs.18143
  11. Kobayashi, A., K. Hori, T. Yamamoto, and M. Yano. 2018. Koshihikari: A premium short-grain rice cultivar - its expansion and breeding in Japan. Rice 11 : 15. https://doi.org/10.1186/s12284-018-0207-4
  12. KOSIS (Korean Statistical Information Service). 2020. Agriculture, forestry and fisheries research. http://kosis.kr.
  13. Li, W., M. Chern, J. Yin, J. Wang, and X. Chen. 2019. Recent advances in broad-spectrum resistance to the rice blast disease. Current Opinion in Plant Biology 50 : 114-120. https://doi.org/10.1016/j.pbi.2019.03.015
  14. Li, Y. B., C. J. Wu, G. H. Jiang, L. Q. Wang, and Y. Q. He. 2007. Dynamic analyses of rice blast resistance for the assessment of genetic and environmental effects. Plant Breeding 126 : 541-547. https://doi.org/10.1111/j.1439-0523.2007.01409.x
  15. McCouch, S. R. 2008. Gene nomenclature system for rice. Rice 1 : 72-84. https://doi.org/10.1007/s12284-008-9004-9
  16. Meng, L., H. Li, L. Zhang, and J. Wang. 2015. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal 3 : 269-283. https://doi.org/10.1016/j.cj.2015.01.001
  17. Mo, Y., J. M. Jeong, W. J. Kim, B. K. Kim, and J. U. Jeung. 2019. 'Baegilmi', an extremely early maturing blast resistant rice with good grain appearance. Korean Journal of Breeding Science 51 : 151-159. https://doi.org/10.9787/KJBS.2019.51.2.151
  18. Nguyen, T. T. T., S. Koizumi, T. N. La, K. S. Zenbayashi, T. Ashizawa, N. Yasuda, I. Imazaki, and A. Miyasaka. 2006. Pi35 (t), a new gene conferring partial resistance to leaf blast in the rice cultivar Hokkai 188. Theoretical and Applied Genetics 113 : 697-704. https://doi.org/10.1007/s00122-006-0337-8
  19. RDA (Rural Development Administration). 2011. Manual for the standard evaluation method in agricultural experiment and research. Suwon, Korea : Rural Development Administration.
  20. Takahashi, A., N. Hayashi, A. Miyao, and H. Hirochika. 2010. Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging. BMC Plant Biology 10 : 175. https://doi.org/10.1186/1471-2229-10-175
  21. Wang, Z. X., U. Yamanouchi, Y. Katayose, T. Sasaki, and M. Yano. 2001. Expression of the Pib rice-blast-resistance gene family is up-regulated by environmental conditions favouring infection and by chemical signals that trigger secondary plant defences. Plant Molecular Biology 47 : 653-661. https://doi.org/10.1023/A:1012457113700
  22. Zhang, L., H. Li, Z. Li, and J. Wang. 2008. Interactions between markers can be caused by the dominance effect of quantitative trait loci. Genetics 180 : 1177-1190. https://doi.org/10.1534/genetics.108.092122