DOI QR코드

DOI QR Code

Optimum Grain Filling Temperature for Yield Improvement of Rice Varieties Originated from High-Altitude Areas

고위도 지역 재배 벼 품종의 수량 향상을 위한 등숙적온 분석

  • Yang, Woonho (Crop Cultivation & Environment Research Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Kang, Shingu (Crop Cultivation & Environment Research Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Choi, Jong-Seo (Crop Cultivation & Environment Research Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Park, Jeong-Hwa (Crop Cultivation & Environment Research Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Sukjin (Planning & Coordination Division, National Institute of Crop Science, Rural Development Administration)
  • 양운호 (농촌진흥청 국립식량과학원 중부작물부 재배환경과) ;
  • 강신구 (농촌진흥청 국립식량과학원 중부작물부 재배환경과) ;
  • 최종서 (농촌진흥청 국립식량과학원 중부작물부 재배환경과) ;
  • 박정화 (농촌진흥청 국립식량과학원 중부작물부 재배환경과) ;
  • 김숙진 (농촌진흥청 국립식량과학원 기획조정과)
  • Received : 2020.04.08
  • Accepted : 2020.07.22
  • Published : 2020.09.01

Abstract

A field test and a phytotron study were performed over two years to examine whether rice varieties originated from higher altitude areas have lower optimum grain filling temperatures for yield improvement than the varieties from South Korea. Three varieties originated from North Korea and three varieties from northern China were compared to the same number of varieties from South Korea. In a field study, the optimum grain filling temperatures over 40 days after heading were 22.6 - 23.0℃, 21.5 - 22.3℃, and 21.5 - 23.6℃ for the varieties from North Korea, northern China, and South Korea, respectively, resulting in no significant difference among varietal groups. Meanwhile, the heading dates of the early maturing varieties from North Korea and China were 7 - 12 days earlier than that of the early maturing Odae variety from South Korea during the first transplant of 2017. The phytotron study, in which different temperature regimes were imposed from flowering/fertilization to harvest with constant daily mean temperatures, revealed that milled rice weight did not decrease under low temperatures, even at 16℃, compared to that at 22℃. At the fourth transplant in the field study, mean temperature lower than 10℃ appeared before rice grains were fully developed, resulting in yield reductions. It was concluded that rice varieties adaptable to high-altitude areas do not have lower optimum grain filling temperatures but, instead, possess shorter growth durations. It was further suggested that the optimum grain filling temperature of rice observed under natural conditions could be attributed to the lowering temperature at the late filling stage under temperate climatic conditions.

우리나라보다 고위도 저온 지역인 북한과 중국 동북3성에서 재배되는 자포니카 벼 품종의 등숙적온이 더 낮은지를 밝히기 위하여, 국립식량과학원 중부작물부(수원) 벼 재배시험 포장과 인공기상실에서 등숙기간 중 기온을 조절하여 2년간 시험한 결과는 다음과 같다. 1. 포장시험에서 백미중 향상을 위한 출수 후 40일간 등숙 적온은 북한 품종에서 22.6~23.0℃, 중국 동북3성 품종에서 21.5~22.3℃로, 남한 품종의 21.5~23.6℃에 비해 낮지 않았다. 2. 2017년 1차 이앙에서 북한 품종 중 길주1과 중국 재배 품종은 남한의 오대 대비 출수기가 7~12일 빨랐다. 3. 인공기상실에서 개화 수정 후 수확기까지 동일한 온도 조건으로 평균기온을 16~22℃로 처리하여 검토한 결과, 남한 품종 중 삼광과 북한 품종 중 평양21을 제외한 7품종에서 백미중은 처리간 유의한 차이가 없어 평균기온 16℃까지 잠재 등숙성이 유지되었다. 4. 포장시험에서 품종별 상관식에 출수 후 40일간 평균기온 16, 18, 20, 22℃를 대입하여 분석한 백미중 지수는 인공기상실 시험과 다르게 22℃보다 기온이 낮아짐에 따라 급격하게 저하되었다. 5. 대부분의 품종에서 수확기경에 평균기온 10~16℃ 사이가 유지된 조건에서 백미중이 가장 높았고, 16℃보다 높거나 10℃보다 낮아지는 조건에서는 수량이 저하되었다. 6. 종합적으로 우리나라보다 고위도 저온지역에서 적응하는 벼 품종의 특성은 낮은 등숙적온이 아니라 짧은 생육 기간이며, 포장 조건에서 나타나는 벼의 등숙적온은 온대기후 특성상 등숙후기에 기온이 저하되는데 원인이 있는 것으로 해석되었다.

Keywords

References

  1. Ahmed, N., M. Maekawa, and I. J. Tetlow. 2008. Effects of low temperature on grain filling, amylose content, and activity of starch biosynthesis enzymes in endosperm of basmati rice. Australian Journal of Agricultural Research 59 : 599-604. https://doi.org/10.1071/AR07340
  2. Akinbile, C. O., K. M. Abd El-Latif, R. Abdullah, and M. S. Yusoff. 2011. Rice production and water use efficiency for self-sufficiency in Malaysia. A review. Trends in Applied Sciences Research 6(10) : 1127-1140. https://doi.org/10.3923/tasr.2011.1127.1140
  3. Chae, J.-C. and D.-K. Jun. 2002. Effect of harvest time on yield and quality of rice. Korean Journal of Crop Science 47(3) : 254-258.
  4. Choi, K.-J., T.-S. Park, C.-K. Lee, J.-T. Kim, J.-H. Kim, K.-Y. Ha, W.-H. Yang, C.-K. Lee, K.-S. Kwak, H.-K. Park, J.-K. Nam, J.-I. Kim, G.-J. Han, Y.-S. Cho, Y.-H. Park, S.-W. Han, J.-R. Kim, S.-Y. Lee, H.-G. Choi, S.-H. Cho, H.-G. Park, D.-J. Ahn, W.-K. Joung, S.-I. Han, S.-Y. Kim, K. C. Jang, S.-H. Oh, W. D. Seo, J.-E. Ra, J. Y. Kim, and H.-W. Kang. 2011. Effect of temperature during grain filling stage on grain quality and taste of cooked rice in mid-late maturing rice varieties. Korean Journal of Crop Science 56(4) : 404-412. https://doi.org/10.7740/kjcs.2011.56.4.404
  5. Cock, J. H. and S. Yoshida. 1972. Accumulation of 14C-labelled carbohydrate before flowering and subsequent redistribution and respiration in the rice plants. Proceedings of Crop Science Society, Japan. 41 : 226-234. https://doi.org/10.1626/jcs.41.226
  6. Deng, N., X. Ling, Y. Sun, C. Zhang, S. Fahad, S. Peng, K. Cui, L. Nie, and J. Huang. 2015. Influence of temperature and solar radiation on grain yield and quality in irrigated rice system. European Journal of Agronomy 64 : 37-46. https://doi.org/10.1016/j.eja.2014.12.008
  7. Ebata, M. 1990. Effect of heat unit summation and base temperature on the development of rice plant. II. On heading, flowering, kernel development and maturing of rice. Japanese Journal of Crop Science 59(2) : 233-238. https://doi.org/10.1626/jcs.59.233
  8. Gao, L. Z., Z. Q. Jin, and L. Li. 1987. Photo-thermal models of rice growth duration for various varietal types in China. Agricultural and Forest Meteorology 39 : 205-213. https://doi.org/10.1016/0168-1923(87)90038-4
  9. Gao, L., Z. Jin, Y. Huang, and L. Zhang. 1992. Rice clock model - a computer model to simulate rice development. Agricultural and Forest Meteorology 60 : 1-16. https://doi.org/10.1016/0168-1923(92)90071-B
  10. Jeong, E. G., J. D. Yea, M. K. Baek, H. P. Moon, and K. M. Yoon. 2000. Cold tolerance in rice varieties of North Korea. Korean Journal of Breeding 32(1) : 45-50.
  11. Kim, D.-S., J.-C. Shin, K.-J. Choi, C.-K. Lee, and J.-K. Kim. 2003. Varietal characteristics of kernel growth of rice influenced by different temperature regimes during grain filling. Korean Journal of Crop Science 48(5) : 397-401.
  12. Kim, J., J. Shon, H. Jeong, W. Yang, C. K. Lee, and K. S. Kim. 2014. Statistical assessment of the late marginal heading date for normal maturation of temperate japonica rice in South Korea. Journal of Crop Science and Biotechnology 17(4) : 247-253. https://doi.org/10.1007/s12892-014-0115-0
  13. Kim, K. C. 1983. Studies on the effect of temperature during the reduction division and the grain filling stage in rice plants. Korean Journal of Crop Science 28(1) : 58-75.
  14. Kim, M.-K., S.-B. Lee, J.-M. Jeong, E.-K. Ahn, J.-P. Suh, W.-J. Hyun, C.-I. Yang, B.-K. Kim, P. Yuan, and S. Kou. 2015. Compare of agronomic characteristics of Korean rice varieties at Jinbu of Korea and Malong of China. Korean Journal of International Agriculture 27(3) : 298-302. https://doi.org/10.12719/KSIA.2015.27.3.298
  15. Kim, S.-S., J.-H. Lee, J.-K. Nam, W.-Y. Choi, N.-H. Baek, H.-K. Park, M.-G. Choi, C.-K. Kim, and K.-Y. Jung. 2005. Proper harvesting time for improving the rice quality in Honam plain area. Korean Journal of Crop Science 50(S) : 62-68.
  16. Kim, Y. H., H. D. Kim, S. W. Han, J. Y. Choi, J. M. Koo, U. Chung, J. Y. Kim, and J. I. Yun. 2002. Using spatial data and crop growth modeling to predict performance of South Korean rice varieties grown in western coastal plains in North Korea. Korean Journal of Agricultural and Forest Meteorology 4(4) : 224-236.
  17. KMA (Korea Meteorological Administration), 2020: http://data.kma.go.kr/data/gmd/SelectAsosRltmList.do?pgmNo=36(2020. 4. 4).
  18. Noh, T. H., S. Y. Lee, S. S. Kim, J. K. Lee, H. T. Shin, and S. Y. Cho. 1997. Meteo-ecological characterization of North Korean rice varieties. Korean Journal of Breeding 29(4) : 404-408.
  19. Park, J.-S., S.-W. Han, Y.-C. Ju, and Y-.D. Rho. 1999. Nitrogen response on growth and yield in rice varieties of North Korea and China. Korean Journal of International Agriculture 11(4) : 363-371.
  20. Rani, B. A. and N. Maragatham. 2013. Effect of elevated temperature on rice phenology and yield. Indian Journal of Science and Technology 6(8) : 5095-5097.
  21. RDA (Rural Development Administration). 2015. Quality Rice Production Technologies. Rural Development Administration. pp. 126-179.
  22. Tanaka, M. 1950. Practical studies on the injuries of cool weather in rice plant. II. Temperature and heading date need to full development of rice grains. Japanese Journal of Crop Science 19(1-2) : 57-61. https://doi.org/10.1626/jcs.19.57
  23. Wikipidia, 2020: https://en.wikipedia.org/wiki/Growing_degree-day (2020. 1. 27).
  24. Yang, W., J.-H. Park, J.-S. Choi, S. Kang, and S. Kim. 2019. Yield characteristics and related agronomic traits affected by the transplanting date in early maturing varieties of rice in the central plain area of Korea. Korean Journal of Crop Science 64(3) : 165-174.
  25. Yang, W., K.-J. Choi, J. Shon, S. Kang, S.-H. Shin, K.-B. Shim, J. Kim, H. Jung, J. H. Jang, J.-S. Jung, C. Y. Lee, Y. T. Yun, S. J. Kwon, K. An, J.-H. Shin, and S. M. Bae. 2015. Effects of temperature and sunshine hours during grain filling stage on the quality-related traits of high quality rice varieties in Korea. Korean Journal of Crop Science 60(3) : 273-281. https://doi.org/10.7740/kjcs.2015.60.3.273
  26. Yang, W., S. Kang, S. Kim, J.-S. Choi, and J-H. Park. 2018a. Assessment of the safe rice cropping period based on temperature data in different regions of North Korea. Korean Journal of Agricultural and Forest Meteorology 20(2) : 190-204. https://doi.org/10.5532/KJAFM.2018.20.2.190
  27. Yang, W., S. Kang, S. Kim, J.-S. Choi, and J-H. Park. 2018b. Temperature data-based assessment of the marginal heading dates and the growth duration of rice in the regions of North Korea. Korean Journal of Agricultural and Forest Meteorology 20(4) : 284-295. https://doi.org/10.5532/KJAFM.2018.20.4.284
  28. Yang, W.-H., D.-S. Kim, Y.-S. Kang, and M.-H. Lee. 2001. Response of temperature and daylength of North Korean rice varieties. Korean Journal of International Agriculture 13(1) : 52-57.
  29. Yang, W. H., D. S. Kim, Y. H. Jeon, Y. C. Cho, J.-K. Kim, and M.-H. Lee. 2004. Heading aspects of North Korean rice varieties in South Korea. Korean Journal of International Agriculture 16(1) : 68-75.
  30. Yoon, S.-T. and J.-H. Kim. 2006. Crop cultivation and climate characteristics of different agricultural zone in North Korea. Korean Journal of International Agriculture 18(1) : 7-16.
  31. Yoshida, S. 1981. Fundamentals of Rice Crop Science. International Rice Research Institute. p. 269.
  32. Yoshida, S. and T. Hara. 1977. Effects of air temperature and light on grain filling of an indica and a japonica rice (Oryza sativa L.) under controlled environmental conditions. Soil Science and Plant Nutrition 23(1) : 93-107. https://doi.org/10.1080/00380768.1977.10433026

Cited by

  1. 북한 저온 지역의 기온과 일장 조건에서 벼 품종의 출수 반응 vol.66, pp.3, 2020, https://doi.org/10.7740/kjcs.2021.66.3.190