DOI QR코드

DOI QR Code

Electrical Resistivity of Natural Graphite/Polymer Composite based Bipolar Plates for Phosphoric Acid Fuel Cells by Addition of Carbon Black

카본블랙 첨가량에 따른 인산형 연료전지(PAFC) 분리판용 천연흑연-고분자복합재료의 전기비저항

  • Kim, Hyo-Chang (School of Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Lee, Sang-Min (Advanced Material Research Center, Kumoh National Institute of Technology) ;
  • Nam, Gibeop (Advanced Material Research Center, Kumoh National Institute of Technology) ;
  • Roh, Jae-Seung (School of Materials Science and Engineering, Kumoh National Institute of Technology)
  • 김효창 (금오공과대학교 신소재공학과) ;
  • 이상민 (금오공과대학교 신소재연구소) ;
  • 남기법 (금오공과대학교 신소재연구소) ;
  • 노재승 (금오공과대학교 신소재공학과)
  • Received : 2020.08.24
  • Accepted : 2020.09.02
  • Published : 2020.10.27

Abstract

Conductive polymer composites with high electrical and mechanical properties are in demand for bipolar plates of phosphoric acid fuel cells (PAFC). In this study, composites based on natural graphite/fluorinated ethylene propylene (FEP) and different ratios of carbon black are mixed and hot formed into bars. The overall content of natural graphite is replaced by carbon black (0.2 wt% to 3.0 wt%). It is found that the addition of carbon black reduces electrical resistivity and density. The density of composite materials added with carbon black 3.0 wt% is 2.168 g/㎤, which is 0.017 g/㎤ less than that of non-additive composites. In-plane electrical resistivity is 7.68 μΩm and through-plane electrical resistivity is 27.66 μΩm. Compared with non-additive composites, in-plane electrical resistivity decreases by 95.7 % and through-plane decreases by 95.9 %. Also, the bending strength is about 30 % improved when carbon black is added at 2.0 wt% compared to non-additive cases. The decrease of electrical resistivity of composites is estimated to stem from the carbon black, which is a conductive material located between melted FEP and acts a path for electrons; the increasing mechanical properties are estimated to result from carbon black filling up pores in the composites.

Keywords

References

  1. S. J. Park, Carbon Materials: Principles and Applications, p. 257, Daeyeongsa (2006).
  2. M. J. Kim, C. K. Jin and C. G. Kang, Proc. IME. B J. Eng. Manufact., 229, 1976, (2015).
  3. P. Lettenmeier, R. Wang, R. Abouatallah, B. Saruhan, O. Freitag, P. Gazdzicki, T. Morawietz, R. Hiesgen, A. S. Gago and K. A. Friedrich, Sci. Rep., 7, 1 (2017). https://doi.org/10.1038/s41598-016-0028-x
  4. J. W. Lim, M. K. Kim and D. G. Lee, Korean Soc. Compos. Mater., 29, 243 (2016).
  5. E. A. Cho, U. S. Jeon, S. A. Hong, I. H. Oh and S. G. Kang, J. Power Sources, 142, 177 (2005). https://doi.org/10.1016/j.jpowsour.2004.10.032
  6. K. M. Kang, S. H. Park, J. S. Kim, H. J. Ji and H. C. Ju, Korean Hydrogen and New Energy Soc., 23, 134 (2012). https://doi.org/10.7316/KHNES.2012.23.2.134
  7. N. Mary, C. Augustine, S. Joseph and S. Heartson, IJAREEIE, 5, 5488 (2016).
  8. Y. H. Yoon, S. H. Lim and D. H. Kim, J. Korea Academia-Ind. cooperation Soc., 11, 1361 (2010). https://doi.org/10.5762/KAIS.2010.11.4.1361
  9. J. H. Kim, Korean Hydrogen and New Energy Soc., 22, 409 (2011).
  10. B. Dhungana and Y. G. Son, Polymer(Korea), 43, 188 (2019).
  11. J. H. Lee, Y. K. Jang, C. E. Hong, N. H. Kim, P. Li and H. K. Lee, J. Power Sources, 193, 523 (2009). https://doi.org/10.1016/j.jpowsour.2009.04.029
  12. T. Villmow, P. Potschke, S. Pegel, L. Haussler and B. Kretzschmar, Polymer, 49, 3500 (2008). https://doi.org/10.1016/j.polymer.2008.06.010
  13. J. W. Lim, Compos. Res., 32, 222 (2019). https://doi.org/10.7234/composres.2019.32.5.222
  14. H. K. Lee and K. S. Han, Trans. Korean Hydrogen New Energy Soc., 31, 49 (2020). https://doi.org/10.7316/KHNES.2020.31.1.49
  15. S. M. Lee, U. G. Beak, T. J. Kim and J. S. Roh, Korean J. Mater. Res., 27, 664 (2017). https://doi.org/10.3740/MRSK.2017.27.12.664
  16. P. H. Maheshwari, R. B. Mathur and T. L. Dhami, J. Power Sources, 173, 394 (2007). https://doi.org/10.1016/j.jpowsour.2007.04.049
  17. Y. M. Kim, K. L. An, C. Kim, Y. O. Choi, S. H. Park, K. S. Yang and W. E. Lee, Carbon Lett., 1, 22 (2000).
  18. M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio and R. Saito, Phys. Chem. Chem. Phys., 9, 1276 (2007). https://doi.org/10.1039/B613962K
  19. L. Li, W. Li, J. Ge, Y. Wu, S. Jiang and F. Liu, J. Sep. Sci., 31, 3588 (2008). https://doi.org/10.1002/jssc.200800384
  20. R. B. Mathur, S. R. Dhakate, D. K. Gupta, T. L. Dhami and R. K. Aggarwal, J. Mater. Process. Technol., 203, 184 (2008). https://doi.org/10.1016/j.jmatprotec.2007.10.044
  21. J. K. Kim, Rubber Soc. Korea, 33, 355 (1996).