DOI QR코드

DOI QR Code

산달래 추출물의 3T3-L1 지방전구세포 분화 억제 효능

Inhibitory effect of Allium macrostemon extracts on adipogenesis of 3T3-L1 preadipocytes

  • 이주연 (영남대학교 식품영양학과) ;
  • 정예주 (영남대학교 식품영양학과) ;
  • 김진아 (영남대학교 식품영양학과) ;
  • 김춘영 (영남대학교 식품영양학과)
  • Lee, Joo-Yeon (Department of Food and Nutrition, Yeungnam University) ;
  • Jeong, Yeju (Department of Food and Nutrition, Yeungnam University) ;
  • Kim, Jina (Department of Food and Nutrition, Yeungnam University) ;
  • Kim, Choon Young (Department of Food and Nutrition, Yeungnam University)
  • 투고 : 2020.06.16
  • 심사 : 2020.07.31
  • 발행 : 2020.10.31

초록

산달래 열수추출물의 생리활성을 비교하기 위하여 산달래를 전체(WAE), 비늘줄기(BAE), 잎(LAE)으로 분리하여 추출한 후 항산화 활성, 총 폴리페놀 함량, 지방전구세포 분화 억제 효과를 확인하였다. BAE에 비해 WAE와 LAE는 유의적으로 높은 라디칼 소거능, 환원력과 총 폴리페놀 함량을 보였다. 지방전구세포 분화 억제능 역시 BAE에 비해 WAE와 LAE가 유의적으로 높은 것을 확인할 수 있었다. 이를 통해 산달래 전체 중 가장 많은 부분을 차지하는 잎에 유효성분이 있을 것으로 판단되어, LAE의 항비만 효능을 알아보았다. LAE는 농도의존적으로 지방전구세포의 분화를 감소시켰으며 이는 독성에 의한 3T3-L1 세포 사멸에 의한 것이 아님을 세포생존율 측정을 통해 확인하였다. LAE의 지방전구세포 분화 억제능은 adipogenesis 관련 전사인자인 CCAAT/enhancer-binding protein beta (C/EBPβ), peroxisome proliferator-activated receptor gamma (PPARγ), C/EBPα 유전자 발현의 억제와 관련이 있는 것으로 확인하였다. 또한 lipogenesis에 필수적인 효소 stearoyl-CoA desaturase 1 (SCD1)의 유전자 발현을 저해하였다. 이를 통해 산달래 추출물 중 LAE는 adipogenic 전사인자와 SCD1 유전자 조절을 통해 지방전구세포 분화를 억제함을 밝혔고 항비만 기능성 물질로서의 활용 가능성을 확인하였다. 따라서 산달래가 항비만 효과가 있는 식품임을 입증하고 건강기능성식품 소재로서 상품화될 가능성을 제시하고자 한다.

The aim of this study was to compare the biological activities of whole-plant (WAE), bulb (BAE), and leaf (LAE) extracts of Allium macrostemon. The antioxidant activities, total polyphenol contents, and anti-adipogenic activities of WAE and LAE were superior to those of BAE, whereas the biological effects of WAE and LAE were similar. Therefore, the effect of LAE on adipogenesis was further investigated. Treatment of preadipocytes with LAE at 100 g/mL resulted in the inhibition of intracellular lipid accumulation by 49.64%. Consistent with this result, quantitative reverse transcription-PCR showed that LAE treatment decreased the gene expressions of CCAAT/enhancer-binding protein beta (C/EBPβ), peroxisome proliferator-activated receptor gamma (PPARγ), C/EBPα and stearoyl-CoA desaturase 1 (SCD1). Thus, LAE attenuates the adipogenesis of preadipocytes by suppressing the expression of adipogenic and lipogenic genes. These results suggest that LAE can be potentially useful as a functional ingredient to prevent obesity in the food industry.

키워드

참고문헌

  1. Balogun O, Pei Y, Kang HW. Garlic Scape Extract Decreases Adipogenesis and Lipogenesis by Activating AMK-Activated Protein Kinase in 3T3-L1 Adipocytes. CDN. 4: 1608-1608 (2020)
  2. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal. Biochem. 239: 70-76 (1996) https://doi.org/10.1006/abio.1996.0292
  3. Brand-Williams W, Cuvelier M-E, Berset CLWT. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28: 25-30 (1995) https://doi.org/10.1016/S0023-6438(95)80008-5
  4. Chang E, Kim CY. Natural products and obesity: a focus on the regulation of mitotic clonal expansion during adipogenesis. Molecules. 24: 1157 (2019) https://doi.org/10.3390/molecules24061157
  5. Choe SS, Huh JY, Hwang IJ, Kim JI, Kim JB. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders. Front. Endocrinol. 7: 30 (2016)
  6. Cignarelli A, Genchi VA, Perrini S, Natalicchio A, Laviola L, Giorgino F. Insulin and insulin receptors in adipose tissue development. Int. J. Mol. Sci. 20: 759 (2019) https://doi.org/10.3390/ijms20030759
  7. Farmer, SR. Transcriptional control of adipocyte formation. Cell Metab. 4: 263-273 (2006) https://doi.org/10.1016/j.cmet.2006.07.001
  8. Guo D, Bell EH, Mischel P, Chakravarti, A. Targeting SREBP-1-driven lipid metabolism to treat cancer. Curr. Pharm. Des. 20: 2619-2626 (2014) https://doi.org/10.2174/13816128113199990486
  9. Hamissa AMB, Seffen M, Aliakbarian B, Casazza AA, Perego P, Converti A. Phenolics extraction from Agave americana (L.) leaves using high-temperature, high-pressure reactor. Food Bioprod. Process. 90: 17-21 (2012) https://doi.org/10.1016/j.fbp.2010.11.008
  10. Han IH, Kim J-H. Antioxidant and Physiological Activities of Water and Ethanol Extracts of Diverse Parts of Welsh Onion. J. Korean Soc. Food Sci. Nutr. 46: 426-434 (2017) https://doi.org/10.3746/jkfn.2017.46.4.426
  11. Im JS, Lee EH, Lee JN, Kim KD, Kim HY, Kim MJ. Sulforaphane and Total Phenolics Contents and Antioxidant Activity of Radish according to Genotype and Cultivation Location with Different Altitudes. HST. 28: 335-342 (2010)
  12. Jung JE, Sin SM, Kim HM, Lee S, Choi K, Park KW, Ku JJ, Cho EJ. Screening of radical scavenging activity and gastric cancer prevention activity from Korean folk plants. J. Cancer Prev. 16: 65-73 (2011)
  13. Kim HJ, Lee M-J, Jang J-Y, Lee S-H. Allium hookeri Root Extract Inhibits Adipogenesis by Promoting Lipolysis in High Fat DietInduced Obese Mice. Nutrients. 11: 2262 (2019) https://doi.org/10.3390/nu11102262
  14. Kim K-H, Kim H-J, Byun M-W, Yook H-S. Antioxidant and Antimicrobial Activities of Ethanol Extract from Six Vegetables Containing Different Sulfur Compounds. J. Korean Soc. Food Sci. Nutr. 41: 577-583 (2012) https://doi.org/10.3746/jkfn.2012.41.5.577
  15. Kim NE, Seo DY, Cheon WY, Choi YM, Lee JS, Kim YH. Bioactive Nutritional Compounds and Antioxidant Activity of Green Peppers Consumed in Korea. J. Korean Soc. Food Sci. Nutr. 49: 141-148 (2020) https://doi.org/10.3746/jkfn.2020.49.2.141
  16. Kim Y-H, Shon M-Y, Sung N-J. Antioxidant and Antimutagenic Activities of Hot Water Extract from White and Yellow Onions after Simulated Gastric Digestion. J. Life Sci. 14: 925-930 (2004) https://doi.org/10.5352/JLS.2004.14.6.925
  17. Korean Society for the Study of Obesity (KSSO). 2019 Obesity Fact Sheet. Obesity Fact Sheet. 5: in press (2019)
  18. Ksouri R, Megdiche W, Debez A, Falleh H, Grignon C, Abdelly C. Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiol. Biochem. 45: 244-249 (2007) https://doi.org/10.1016/j.plaphy.2007.02.001
  19. Lee CW, Seo JY, Lee J, Choi JW, Cho S, Bae JY, Sohng JK, Kim SO, Kim J, Park YI. 3-O-Glucosylation of quercetin enhances inhibitory effects on the adipocyte differentiation and lipogenesis. Biomed. Pharmacother. 95: 589-598 (2017) https://doi.org/10.1016/j.biopha.2017.08.002
  20. Lowe CE, O'Rahilly S, Rochford JJ. Adipogenesis at a glance. J. Cell. Sci. 124: 2681-2686 (2011) https://doi.org/10.1242/jcs.079699
  21. Makino T, Kanemaru M, Okuyama S, Shimizu R, Tanaka H, Mizukami H. Anti-allergic effects of enzymatically modified isoquercitrin ($\alpha$-oligoglucosyl quercetin 3-O-glucoside), quercetin 3-O-glucoside, $\alpha$-oligoglucosyl rutin, and quercetin, when administered orally to mice. J. Nat. Med. 67: 881-886 (2013) https://doi.org/10.1007/s11418-013-0760-5
  22. Manach C, Scalbert A, Morand C, Rmsy C, Jimnez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 79: 727-747 (2004) https://doi.org/10.1093/ajcn/79.5.727
  23. Moreno-Navarrete JM, Fernndez-Real JM. Adipocyte Differentiation. Adipose Tissue Biology. 69-90 (2017)
  24. Morrison RF, Farmer SR. Hormonal signaling and transcriptional control of adipocyte differentiation. J. Nutr. 130: 3116S-3121S (2000) https://doi.org/10.1093/jn/130.12.3116S
  25. Muni Swamy G, Ramesh G, Devi Prasad R, Meriga B. Astragalin,(3-O-glucoside of kaempferol), isolated from Moringa oleifera leaves modulates leptin, adiponectin secretion and inhibits adipogenesis in 3T3-L1 adipocytes. Arch. Physiol. Biochem. 1-7 (2020)
  26. Nakane R, Iwashina T. Flavonol glycosides from the leaves of Allium macrostemon. Nat. Prod. Commun. 10: 1934578X1501000817 (2015)
  27. Singleton VL, Orthofer R, Lamuela-Ravents RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Meth. Enzymol. 299: 152-178 (1999) https://doi.org/10.1016/S0076-6879(99)99017-1
  28. Wang X, Hai C. Redox modulation of adipocyte differentiation: hypothesis of "Redox Chain" and novel insights into intervention of adipogenesis and obesity. Free Radic. Biol. Med. 89: 99-125 (2015) https://doi.org/10.1016/j.freeradbiomed.2015.07.012
  29. World Health Organization (WHO). Obesity. Available from: https://www.who.int/news-room/facts-in-pictures/detail/6-facts-on-obesity. Accessed Feb. 10, 2020.
  30. Xie W, Zhang Y, Wang N, Zhou H, Du L, Ma X, Shi X, Cai G. Novel effects of macrostemonoside A, a compound from Allium macrostemon Bung, on hyperglycemia, hyperlipidemia, and visceral obesity in high-fat diet-fed C57BL/6 mice. Eur. J. Pharmacol. 599: 159-165 (2008) https://doi.org/10.1016/j.ejphar.2008.09.042
  31. Yao D, Luo J, He Q, Shi H, Li J, Wang H, Xu H, Chen Z, Yi Y, Loor J J. SCD1 alters longchain fatty acid (LCFA) composition and its expression is directly regulated by SREBP1 and $PPAR{\gamma}$ 1 in dairy goat mammary cells. J. Cell. Physiol. 232: 635-649 (2017) https://doi.org/10.1002/jcp.25469
  32. Zhang Z, Wang F, Wang M, Ma L, Ye H, Zeng XJ. A comparative study of the neutral and acidic polysaccharides from Allium macrostemon Bunge. Carbohydr. Polym. 117: 980-987 (2015) https://doi.org/10.1016/j.carbpol.2014.10.019
  33. Zhang Z, Wang F, Wang M, Ma L, Zeng X. Extraction optimisation and antioxidant activities in vitro of polysaccharides from Allium macrostemon Bunge. Int. J. Food Sci. 47: 723-730 (2012) https://doi.org/10.1111/j.1365-2621.2011.02899.x