DOI QR코드

DOI QR Code

Usage- and daily intake-based cytotoxicity study of frequently used natural food additives in South Korea

국내 다빈도 사용 천연첨가물의 사용량 및 섭취량 기반 세포독성 연구

  • Yu, Jin (Division of Applied Food System, Major of Food Science & Technology, Seoul Women's University) ;
  • Kim, Ye-Hyun (Division of Applied Food System, Major of Food Science & Technology, Seoul Women's University) ;
  • Choi, Soo-Jin (Division of Applied Food System, Major of Food Science & Technology, Seoul Women's University)
  • 유진 (서울여자대학교 식품응용시스템학부 식품공학전공) ;
  • 김예현 (서울여자대학교 식품응용시스템학부 식품공학전공) ;
  • 최수진 (서울여자대학교 식품응용시스템학부 식품공학전공)
  • Received : 2020.08.24
  • Accepted : 2020.09.23
  • Published : 2020.10.31

Abstract

Natural food additives have recently attracted attention as alternatives to synthetic additives. However, little information is available regarding their potential toxicity. In this study, we evaluated ten different natural food additives that are widely used in commercial foods in South Korea based on their actual usage level and daily intake. The results showed that none of the tested natural additives exhibited cytotoxicity in terms of inhibition of cell proliferation/viability and lactate dehydrogenase leakage. Additionally, the tested natural food additives did not generate intracellular reactive oxygen species (ROS), whereas they significantly decreased intracellular ROS levels produced by hydrogen peroxide. Moreover, none of the tested natural additives affected cell proliferation and viability in 2D and 3D intestinal epithelium models. Taken together, the ten natural food additives did not exhibit cytotoxicity in their actual usage levels. These findings can be used to further assess the toxicity of natural food additives.

본 연구에서는 국내에서 다빈도로 사용되고 있는 천연색소, 천연추출물 및 기타용도 천연첨가물 10종에 대한 독성 영향을 세포 수준에서 확인하였다. 세포 처리 농도 및 시간은 품목제조보고를 바탕으로 확인한 천연첨가물 다빈도 첨가 품목 및 그 최대사용량과 국민영양통계 일일섭취량을 기반으로 소장액 부피 및 소장 내 체류시간을 종합적으로 고려하여 설정하였다. 세포 독성 시험 결과, 10종 천연첨가물에 의한 세포성장 저해 및 사멸 유발 영향이 확인되지 않았으며 세포 내 활성산소종이 유발되지 않는 한편, 활성산소종 소거능을 보유하고 있는 것으로 나타났다. 또한, 젖산탈수소효소 분석을 통해 세포막 손상을 유발하지 않는 것으로 확인되었다. 체내 장관계와 유사한 환경을 모사한 2차원 및 3차원 장관계 모사모델을 통해 세포성장 및 사멸 효과 확인 결과, 본 연구에서 사용한 10종의 천연첨가물에 의해 세포성장 저해 및 사멸이 유발되지 않았다. 종합적으로, 본 연구에서 확인한 다빈도로 사용되는 천연첨가물 10종의 세포독성이 현재 사용수준에서는 낮은 것으로 판단되어 안전한 것으로 보인다. 이와 같은 연구결과는 안전성에 대한 정보가 상대적으로 미흡했던 천연첨가물에 대한 구체적인 독성자료로 활용될 수 있으며, 향후 보다 심도 깊은 in vivo 독성 연구를 위한 기초 토대를 마련할 것으로 기대된다.

Keywords

References

  1. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol. Pharm. 4: 807-818 (2007) https://doi.org/10.1021/mp700113r
  2. Bae SH, Yu J, Lee TG, Choi SJ. Protein matrix-ZnO nanoparticle interactions affect protein conformation, but may not be biological responses. Int. J. Mol. Sci. 19: 1-15 (2018) https://doi.org/10.3390/ijms19010001
  3. Baek HH. International management trend of food additives. Food Sci. Ind. 49: 2-10 (2016)
  4. BCC research. The global market for food additives. Available from: https://www.bccresearch.com/market-research/food-and-beverage/food-additives-market.html. Accessed Aug. 4, 2020
  5. Cho MH, Niles A, Huang R, Inglese J, Austin CP, Riss T, Xia M. A bioluminescent cytotoxicity assay for assessment of membrane integrity using a proteolytic biomarker. Toxicol. In Vitro 22: 1099-1106 (2008) https://doi.org/10.1016/j.tiv.2008.02.013
  6. Choi YJ. Food and tar color. Food Sci. Ind. 49: 62-69 (2016)
  7. Clifford T, Constantinou CM, Keane KM, West DJ, Howatson G, Stevenson EJ. The plasma bioavailability of nitrate and betanin from Beta vulgaris rubra in humans. Eur. J. Nutr. 56: 1245-1254 (2017) https://doi.org/10.1007/s00394-016-1173-5
  8. da Silva DVT, Baiao DS, Silva FO, Alves G, Perrone D, Aguila EMD, Paschoalin VMF. Betanin, a natural food additive: stability, bioavailability, antioxidant and preservative ability assessments. Molecules 24: 1-15 (2019) https://doi.org/10.3390/molecules24010001
  9. Datta K, Sinha S, Chattopadhyay P. Reactive oxygen species in health and disease. Natl. Med. J. India 13: 304-310 (2000)
  10. de Araujo RFF, Martins DBG, Borba MACSM. Oxidative Stress and Disease. pp. 185-199. In: A Master Regulator of Oxidative Stress -The Transcription Factor Nrf2. Morales-Gonzalez JA, Morales-Gonzalez A, Madrigal-Santillan EO (ed). IntechOpen, London, UK (2016)
  11. des Rieux A, Fievez V, Theate I, Mast J, Preat V, Schneider YJ. An improved in vitro model of human intestinal follicle-associated epithelium to study nanoparticle transport by M cells. Eur. J. Pharm. Sci. 30: 380-391 (2007) https://doi.org/10.1016/j.ejps.2006.12.006
  12. Edmondson R, Broglie JJ, Adcock AF, Yang L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev. Techn. 12: 207-218 (2014) https://doi.org/10.1089/adt.2014.573
  13. Food and Drug Administration (FDA). CFR-Code of Federal Regulations Title 21. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=170.3. Accessed Aug. 4, 2020
  14. Fernandes I, de Freitas V, Mateus N. Anthocyanins and human health: how gastric absorption may influence acute human physiology. Nutr. Aging 2: 1-14 (2014) https://doi.org/10.3233/NUA-130030
  15. Fukuoka A, Yoshimoto T. Barrier dysfunction in the nasal allergy. Allergol. Int. 67: 18-23 (2018) https://doi.org/10.1016/j.alit.2017.10.006
  16. Gamboa JM, Leong KW. In vitro and in vivo models for the study of oral delivery of nanoparticles. Adv. Drug Deliver. Rev. 65: 800-810 (2013) https://doi.org/10.1016/j.addr.2013.01.003
  17. Korea Health Industry Development Institute (KHIDI). National Food & Nutrition Statistics. Available from: https://www.khidi.or.kr/kps/dhraStat/result1?menuId=MENU01652&year=2017. Accessed Jul. 23, 2019
  18. Korea Health Industry Development Institute (KHIDI). National Food & Nutrition Statistics. Available from: https://www.khidi.or.kr/kps/dhraStat/result1?menuId=MENU01652&gubun=age1&year=2018. Accessed Aug. 5, 2020
  19. Kim IH. The status of Korean food additive production usage and foreign countries. J. Korean Soc. Food Sci. Nutr. 19: 519-529 (1990)
  20. Kim CY. Inhibition of interleukin-$1{\alpha}$-induced intestinal epithelial tight junction permeability by curcumin treatment in Caco-2 cells. J. Life Sci. 26: 1082-1087 (2016) https://doi.org/10.5352/JLS.2016.26.9.1082
  21. Kim SH, Kim IW, Lee HY, Chae IH, Kim MA, Kim HS, Kim CH, Sohn DW, Oh BH, Lee MM, Park YB, Choi YS, Lee YW. The effect of naringin on the lysophosphatidylcholine-induced proliferation of vascular smooth muscle cells. Korean Circ. J. 32: 61-70 (2002) https://doi.org/10.4070/kcj.2002.32.1.61
  22. Kim TK, Ku Sk, Kim YB, Jeon KH, Choi YS. Substitution and technology trend of synthetic additives in processed meat industry: nitrite and phosphate. Food Sci. Anim. Resour. Indu. 6: 98-108 (2017)
  23. Kim IS, Yoo GC. The comparative study on cell cytotoxicity of H2O2 and grapefruit seed extract. J. Korean Ophthalmic Opt. Soc. 9: 173-180 (2004)
  24. Lee HH, Jeong JY, Park JM. Analysis of research trend in natural food additives. Food Sci. Ind. 49: 82-93 (2016)
  25. Li Y, Zhang ZY, Zhang JL. Determination of hydroxysafflor yellow A in rat plasma and tissues by high-performance liquid chromatography after oral administration of safflower extract or safflor yellow. Biomed. Chromatogr. 21: 326-334 (2007) https://doi.org/10.1002/bmc.769
  26. Lim JC, Bae CS, Jeong SY, Boo HO, Hwang SJ, Lim SK, Park MJ, Kim JC, Kang SS, Han HJ, Park SH. Preventive effect of natural pigments against ultraviolet B-induced cell death in HaCat cells. Biomed. Sci. Lett. 17: 55-60 (2011)
  27. Lv LZ, Tong CQ, Yu J, Han M, Gao JQ. Mechanism of enhanced oral absorption of hydrophilic drug incorporated in hydrophobic nanoparticles. Int. J. Nanomed. 8: 2709-2717 (2013)
  28. Mabbott NA, Donaldson DS, Ohno H, Williams IR, Mahajan A. Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol. 6: 666-677 (2013) https://doi.org/10.1038/mi.2013.30
  29. Ministry of Food and Drug Safety (MFDS), Food Sanitation Act. No. 17091 (2020a)
  30. Ministry of Food and Drug Safety (MFDS). Article in 2018. Available from: https://www.mfds.go.kr/brd/m_99/view.do?seq=40094&srchFr=&srchTo=&srchWord=%EC%B2%A8%EA%B0%80%EB%AC%BC&srchTp=8&itm_seq_1=0&itm_seq_2=0&multi_itm_seq=0&company_cd=&company_nm=&Data_stts_gubun=C9999&page=4. Accessed Aug. 4, 2020b
  31. Ministry of Food and Drug Safety (MFDS). Food Additives Code. Ministry of Food and Drug Safety, Osong, South Korea (2020c)
  32. Min JY, Park HY, Kim Y, Hong JS, Choi HD. Antioxidant activity and stability of natural pigment extracted from red beetroot (Beta vulgaris L.). J. Korean Soc. Food Sci. Nutr. 47: 725-732 (2018) https://doi.org/10.3746/jkfn.2018.47.7.725
  33. Mohamad MF, Dailin DJ, Gomaa SE, Nurjayadi M, Enshasy HE. Natural colorant for food: a healthy alternative. Int. J. Sci. Technol. Res. 8: 3161-3166 (2019)
  34. Mudie DM, Murray K, Hoad CL, Pritchard SE, Garnett MC, Amidon GL, Gowland PA, Spiller RC, Amidon GE, Marciani L. Quantification of gastrointestinal liquid volumes and distribution following a 240 mL dose of water in the fasted state. Mol. Pharm. 11: 3039-3047 (2014) https://doi.org/10.1021/mp500210c
  35. Nigam PS, Luke JS. Food additives: production of microbial pigments and their antioxidant properties. Curr. Opin. Food Sci. 7: 93-100 (2016) https://doi.org/10.1016/j.cofs.2016.02.004
  36. Okafor SN, Obonga W, Ezeokonkwo MA, Nurudeen J, Orovwigho U, Ahiabuike J. Assessment of the health implications of synthetic and natural food colourants-a critical review. UK J. Pharm. Biosci. 4: 1-11 (2016)
  37. Olivas-Aguirre FJ, Rodrigo-Garcia J, Martinez-Ruiz NDR, Cardenas-Robles AI, Mendoza-Diaz SO, Alvarez-Parrilla E, Gonzalez-Aguilar GA, de la Rosa LA, Ramos-Jimenez A, Wall-Medrano A. Cyanidin-3-O-glucoside: physical-chemistry, foodomics and health effects. Molecules 21: 1-30 (2016) https://doi.org/10.3390/molecules21010001
  38. Oplatowska-Stachowiak M, Elliott CT. Food colors: existing and emerging food safety concerns. Crit. Rev. Food Sci. Nutr. 57: 524-548 (2017) https://doi.org/10.1080/10408398.2014.889652
  39. Papich MG, Martinez MN. Applying biopharmaceutical classification system (BCS) criteria to predict oral absorption of drugs in dogs: challenges and pitfalls. AAPS J. 17: 948-964 (2015) https://doi.org/10.1208/s12248-015-9743-7
  40. Phan TNQ, Iram S, Bernkop-Schnurch A. Hydrophobic ion-pairs and lipid-based nanocarrier systems: The perfect match for delivery of BCS class 3 drugs. J. Control. Release 304: 146-155 (2019) https://doi.org/10.1016/j.jconrel.2019.05.011
  41. Rein MJ, Renouf M, Cruz-Hernandez C, Actis-Goretta L, Thakkar SK, da Silva Pinto M. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy. Br. J. Clin. Pharmacol. 75: 588-602 (2012) https://doi.org/10.1111/j.1365-2125.2012.04425.x
  42. Rommele C, Brueckner J, Messmann H, Golder SK. Clinical experience with the PillCam patency capsule prior to video capsule endoscopy: a real-world experience. Gastroent. Res. Pract. 2016: 1-6 (2016)
  43. Salehi B, Fokou, PVT, Sharifi-Rad M, Zucca P, Pezzani R, Martins N, Sharifi-Rad J. The therapeutic potential of naringenin: a review of clinical trials. Pharmaceuticals 12: 1-18 (2019) https://doi.org/10.3390/pharmaceutics12010001
  44. Singla RK, Bhat GV. Crocin: an overview. Indo Glob. J. Pharm. 1: 281-286 (2011)
  45. Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines 5: 1-16 (2018) https://doi.org/10.3390/medicines5010001
  46. United States Environmental Protection Agency (US EPA). Guidance for evaluating the oral bioavailability of metals in soils for use in human health risk assessment. Available from: https://semspub.epa.gov/work/HQ/175333.pdf. Accessed Sep. 18, 2020
  47. Wang MJ, Chao PDL, Hou YC, Hsiu SL, Wen KC, Tsai SY. Pharmacokinetics and conjugation metabolism of naringin and naringenin in rats after single dose and multiple dose administrations. J. Food Drug Anal. 14: 247-253 (2006)
  48. Wang Y, Ning ZH, Tai HW, Long S, Qin WC, Su LM, Zhao YH. Relationship between lethal toxicity in oral administration and injection to mice: effect of exposure routes. Regul. Toxicol. Pharm. 71: 205-212 (2015) https://doi.org/10.1016/j.yrtph.2014.12.019
  49. Wu X, Pittman HE, Prior RL. Pelargonidin is absorbed and metabolized differently than cyanidin after marionberry consumption in pigs. J. Nutr. 134: 2603-2610 (2004) https://doi.org/10.1093/jn/134.10.2603
  50. Xi L, Qian Z, Du P, Fu J. Pharmacokinetic properties of crocin (crocetin digentiobiose ester) following oral administration in rats. Phytomedicine 14: 633-636 (2007) https://doi.org/10.1016/j.phymed.2006.11.028
  51. Yoon JA, Yu KW, Shin SH, Cho HY. Activation of intestinal immune system by an orally administered methanol extract from pine needles. J. Korean Soc. Food Sci. Nutr. 39: 356-362 (2010) https://doi.org/10.3746/jkfn.2010.39.3.356
  52. Yu J, Hwang JS, Oh MS, Lee S, Choi SJ. Antioxidant activity of ethanol extracts from common and tartary buckwheat milling fractions. Korean J. Food Sci. Technol. 50: 549-554 (2018) https://doi.org/10.9721/KJFST.2018.50.5.549