DOI QR코드

DOI QR Code

Recent Insights into Aeromonas salmonicida and Its Bacteriophages in Aquaculture: A Comprehensive Review

  • Park, Seon Young (Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Han, Jee Eun (Laboratory of Aquatic Biomedicine, College of Veterinary Medicine, Kyungpook National University) ;
  • Kwon, Hyemin (Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Se Chang (Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University) ;
  • Kim, Ji Hyung (Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2020.05.25
  • Accepted : 2020.08.11
  • Published : 2020.10.28

Abstract

The emergence and spread of antimicrobial resistance in pathogenic bacteria of fish and shellfish have caused serious concerns in the aquaculture industry, owing to the potential health risks to humans and animals. Among these bacteria, Aeromonas salmonicida, which is one of the most important primary pathogens in salmonids, is responsible for significant economic losses in the global aquaculture industry, especially in salmonid farming because of its severe infectivity and acquisition of antimicrobial resistance. Therefore, interest in the use of alternative approaches to prevent and control A. salmonicida infections has increased in recent years, and several applications of bacteriophages (phages) have provided promising results. For several decades, A. salmonicida and phages infecting this fish pathogen have been thoroughly investigated in various research areas including aquaculture. The general overview of phage usage to control bacterial diseases in aquaculture, including the general advantages of this strategy, has been clearly described in previous reviews. Therefore, this review specifically focuses on providing insights into the phages infecting A. salmonicida, from basic research to biotechnological application in aquaculture, as well as recent advances in the study of A. salmonicida.

Keywords

References

  1. Colwell RR, MacDonell MT, De Ley J. 1986. Proposal to recognize the family Aeromonadaceae. Int. J. Syst. Evol. Microbiol. 36: 473-477.
  2. Reith ME, Singh RK, Curtis B, Boyd JM, Bouevitch A, Kimball J, et al. 2008. The genome of Aeromonas salmonicida subsp. salmonicida A449: insights into the evolution of a fish pathogen. BMC Genomics 9: 427. https://doi.org/10.1186/1471-2164-9-427
  3. Janda JM, Abbott SL. 2010. The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin. Microbiol. Rev. 23: 35-73. https://doi.org/10.1128/CMR.00039-09
  4. Fernandez-Bravo A, Figueras MJ. 2020. An update on the genus Aeromonas: taxonomy, epidemiology, and pathogenicity. Microorganisms 8: 129. https://doi.org/10.3390/microorganisms8010129
  5. Igbinosa IH, Igumbor EU, Aghdasi F, Tom M, Okoh AI. 2012. Emerging Aeromonas species infections and their significance in public health. Sci. World J. 2012: 625023.
  6. Piotrowska M, Przygodzinska D, Matyjewicz K, Popowska M. 2017. Occurrence and variety of ${\beta}$-lactamase genes among Aeromonas spp. isolated from urban wastewater treatment plant. Front. Microbiol. 8: 863. https://doi.org/10.3389/fmicb.2017.00863
  7. Khajanchi BK, Fadl AA, Borchardt MA, Berg RL, Horneman AJ, Stemper ME, et al. 2010. Distribution of virulence factors and molecular fingerprinting of Aeromonas species isolates from water and clinical samples: suggestive evidence of water-to-human transmission. Appl. Environ. Microbiol. 76: 2313-2325. https://doi.org/10.1128/AEM.02535-09
  8. Janda JM. 1991. Recent advances in the study of the taxonomy, pathogenicity, and infectious syndromes associated with the genus Aeromonas. Clin. Microbiol. Rev. 4: 397-410. https://doi.org/10.1128/CMR.4.4.397
  9. Chen PL, Lamy B, Ko WC. 2016. Aeromonas dhakensis, an increasingly recognized human pathogen. Front. Microbiol. 7: 793.
  10. Parker JL, Shaw JG. 2011. Aeromonas spp. clinical microbiology and disease. J. Infect. 62: 109-118. https://doi.org/10.1016/j.jinf.2010.12.003
  11. Aravena-Roman M, Inglis TJ, Henderson B, Riley TV, Chang BJ. 2014. Distribution of 13 virulence genes among clinical and environmental Aeromonas spp. in Western Australia. Eur. J. Clin. Microbiol. Infect. Dis. 33: 1889-1895. https://doi.org/10.1007/s10096-014-2157-0
  12. Figueira V, Vaz-Moreira I, Silva M, Manaia CM. 2011. Diversity and antibiotic resistance of Aeromonas spp. in drinking and wastewater treatment plants. Water Res. 45: 5599-5611. https://doi.org/10.1016/j.watres.2011.08.021
  13. Dalsgaard I, Gudmundsdottir BK, Helgason S, Hoie S, Thoresen OF, Wichardt UP, et al. 1998. Identification of atypical Aeromonas salmonicida: inter-laboratory evaluation and harmonization of methods. J. Appl. Microbiol. 84: 999-1006. https://doi.org/10.1046/j.1365-2672.1998.00435.x
  14. Emmerich R, Weibel E. 1894. Ueber eine durch Bakterien erengte Seuche unter den Forellen. Archives fur Hygiene und Bakteriologie 21: 1-21.
  15. Tewari R, Dudeja M, Nandy S, Das, AK 2014. Isolation of Aeromonas salmonicida from human blood sample: a case report. J. Clin. Diagn. Res. 8: 139.
  16. Salehi MR, Shadvar S, Sadeghian, M, Doomanlou M, Abdollahi A, Manshadi SA D, et al. 2019. Endocarditis with Aeromonas salmonicida. IDCases 18: e00625. https://doi.org/10.1016/j.idcr.2019.e00625
  17. Vincent AT, Fernandez-Bravo A, Sanchis M, Mayayo, E, Figueras, MJ, Charette SJ. 2019. Investigation of the virulence and genomics of Aeromonas salmonicida strains isolated from human patients. Infect. Genet. Evol. 68: 1-9. https://doi.org/10.1016/j.meegid.2018.11.019
  18. Inglis V, Robertson D, Miller K, Thompson KD, Richards RH. 1996. Antibiotic protection against recrudescence of latent Aeromonas salmonicida during furunculosis vaccination. J. Fish Dis. 19: 341-348. https://doi.org/10.1111/j.1365-2761.1996.tb00372.x
  19. Sommerset I., Krossoy B, Biering E, Frost P. 2005. Vaccines for fish in aquaculture. Exp. Rev. Vaccines 4: 89-101. https://doi.org/10.1586/14760584.4.1.89
  20. Gudding R,Van Muiswinkel WB. 2013. A history of fish vaccination: science-based disease prevention in aquaculture. Fish Shellfish Immun. 35: 1683-1688. https://doi.org/10.1016/j.fsi.2013.09.031
  21. Menanteau-Ledouble S, Krauss I, Santos G, Fibi S, Weber B, El-Matbouli M. 2015. Effect of a phytogenic feed additive on the susceptibility of Onchorhynchus mykiss to Aeromonas salmonicida. Dis. Aquat. Organ. 115: 57-66. https://doi.org/10.3354/dao02875
  22. Barnes AC, Horne MT, Ellis AE. 1996. Effect of iron on expression of superoxide dismutase by Aeromonas salmonicida and associated resistance to superoxide anion. FEMS Microbiol. Lett. 142 :19-26. https://doi.org/10.1111/j.1574-6968.1996.tb08401.x
  23. Cipriano RC, Bullock GL. 2001. Furunculosis and other diseases caused by Aeromonas salmonicida. US Fish and Wildlife Service, USGS, Kearneysville. Fish Disease Leaflet 66.
  24. Dacanay A, Johnson SC, Bjornsdottir R, Ebanks RO, Ross NW, Reith M, et al. 2003. Molecular characterization and quantitative analysis of superoxide dismutases in virulent and avirulent strains of Aeromonas salmonicida subsp. salmonicida. J. Bacteriol. 185: 4336-4344. https://doi.org/10.1128/JB.185.15.4336-4344.2003
  25. Kim JH, Hwang SY, Son JS, Han JE, Jun JW, Shin SP, et al. 2011. Molecular characterization of tetracycline-and quinolone-resistant Aeromonas salmonicida isolated in Korea. J. Vet. Sci. 12: 41-48. https://doi.org/10.4142/jvs.2011.12.1.41
  26. Hayatgheib N, Moreau E, Calvez S, Lepelletier D, Pouliquen, H. 2020. A review of functional feeds and the control of Aeromonas infections in freshwater fish. Aquacult. Int. 28: 1083-1123. https://doi.org/10.1007/s10499-020-00514-3
  27. Adhya S, Merril C. 2006. The road to phage therapy. Nature 443: 754-755. https://doi.org/10.1038/443754a
  28. Moye ZD, Woolston J, Sulakvelidze A. 2018. Bacteriophage applications for food production and processing. Viruses 10: 205. https://doi.org/10.3390/v10040205
  29. Nakai T, Park SC. 2002. Bacteriophage therapy of infectious diseases in aquaculture. Res. Microbiol. 153: 13-18. https://doi.org/10.1016/S0923-2508(01)01280-3
  30. Gon Choudhury T, Tharabenahalli Nagaraju V, Gita S, Paria A, Parhi J. 2017. Advances in bacteriophage research for bacterial disease control in aquaculture. Rev. Fish. Sci. Aquac. 25: 113-125. https://doi.org/10.1080/23308249.2016.1241977
  31. Culot A, Grosset N, Gautier M. 2019. Overcoming the challenges of phage therapy for industrial aquaculture: a review. Aquaculture 513: 734423. https://doi.org/10.1016/j.aquaculture.2019.734423
  32. Imbeault S, Parent S, Lagace M, Uhland CF, Blais JF. 2006. Using bacteriophages to prevent furunculosis caused by Aeromonas salmonicida in farmed brook trout. J. Aquat. Anim. Health 18: 203-214. https://doi.org/10.1577/H06-019.1
  33. Kim JH, Choresca CH, Shin SP, Han JE, Jun JW, Park SC. 2015. Biological control of Aeromonas salmonicida subsp. salmonicida infection in rainbow trout (Oncorhynchus mykiss) using Aeromonas phage PAS‐1. Transbound Emerg. Dis. 62: 81-86. https://doi.org/10.1111/tbed.12088
  34. Silva YJ, Moreirinha C, Pereira C, Costa L, Rocha R J, Cunha A, et al. 2016. Biological control of Aeromonas salmonicida infection in juvenile Senegalese sole (Solea senegalensis) with phage AS-A. Aquaculture 450: 225-233. https://doi.org/10.1016/j.aquaculture.2015.07.025
  35. Nakai, T. 2010. Application of bacteriophages for control of infectious diseases in aquaculture. In Bacteriophages in the control of food-and waterborne pathogens pp. 257-272. American Society of Microbiology.
  36. Oliveira J, Castilho F, Cunha A, Pereira, MJ. 2012. Bacteriophage therapy as a bacterial control strategy in aquaculture. Aquac. Int. 20: 879-910. https://doi.org/10.1007/s10499-012-9515-7
  37. Richards GP. 2014. Bacteriophage remediation of bacterial pathogens in aquaculture: a review of the technology. Bacteriophage 4: e975540. https://doi.org/10.4161/21597081.2014.975540
  38. Rao BM, Lalitha KV. 2015. Bacteriophages for aquaculture: are they beneficial or inimical. Aquaculture 437: 146-154. https://doi.org/10.1016/j.aquaculture.2014.11.039
  39. Austin B, Austin DA. 1993. Bacterial Fish Pathogens: Diseases in Farmed and Wild Fish, 2nd Ed. London: Ellis Horwood.
  40. McCarthy DH, Roberts RJ. 1980. Furunculosis of fish - the present state of our knowledge, pp. 293-341. In Droop MA, Jannasch HW (eds). Advances in Aquatic Microbiology, Academic Press, London.
  41. Dallaire-Dufresne S, Tanaka KH, Trudel MV, Lafaille A, Charette SJ. 2014. Virulence, genomic features, and plasticity of Aeromonas salmonicida subsp. salmonicida, the causative agent of fish furunculosis. Vet. Microbiol. 169: 1-7. https://doi.org/10.1016/j.vetmic.2013.06.025
  42. Wiklund T, Dalsgaard I. 1998. Occurrence and significance of atypical Aeromonas salmonicida in non-salmonid and salmonid fish species: a review. Dis. Aquat. Organ. 32: 49-69. https://doi.org/10.3354/dao032049
  43. Menanteau-Ledouble, S, Kumar, G, Saleh, M, El-Matbouli, M. 2016. Aeromonas salmonicida: updates on an old acquaintance. Dis. Aquat. Organ. 120: 49-68. https://doi.org/10.3354/dao03006
  44. McCraw BM. 1952. Furunculosis of fish. US Fish Wildl. Serv., Special scientific report: Fisheries No 84: 1-87.
  45. Griffin PJ, Snieszko SF, Friddle SB. 1953. A more comprehensive description of Bacterium salmonicida. Trans. Am. Fish. Soc. 82: 129-138. https://doi.org/10.1577/1548-8659(1952)82[129:AMCDOB]2.0.CO;2
  46. Smith IW. 1963. The classification of "Bacterium salmonicida". J. Gen. Microbiol. 33: 263-274. https://doi.org/10.1099/00221287-33-2-263
  47. McCarthy DH. 1977. The identification and significance of atypical strains of Aeromonas salmonicida. Bull. Off. Int. Epiz. 87: 459-463.
  48. Popoff M. 1984. Genus III. Aeromonas. In: Bengey's manual of systematic bacteriology, Vol. 1. Williams and Wilkins, Baltimore, USA.
  49. Austin DA, McIntosh D, Austin B. 1989. Taxonomy of fish associated Aeromonas spp., with the description of Aeromonas salmonicida subsp. smithia subsp. nov. Syst. Appl. Microbiol. 11: 277-290. https://doi.org/10.1016/S0723-2020(89)80026-8
  50. Pavan M, Abbott S, Zorzopulos J, Janda J. 2000. Aeromonas salmonicida subsp. pectinolytica subsp. nov., a new pectinase-positive subspecies isolated from a heavily polluted river. Int. J. Syst. Evol. Microbiol. 50: 1119-1124. https://doi.org/10.1099/00207713-50-3-1119
  51. Parte AC. 2014. LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res. 42: (Database issue):D613-616. https://doi.org/10.1093/nar/gkt1111
  52. Austin B, Austin DA, Dalsgaard I, Gudmundsdóttir BK, Hoie S, Thornton JM, et al. 1998. Characterization of atypical Aeromonas salmonicida by different methods. Syst. Appl. Microbiol. 21: 50-64. https://doi.org/10.1016/S0723-2020(98)80008-8
  53. Garcia J, Larsen, J, Dalsgaard, I, Pedersen K. 2000. Pulsed-field gel electrophoresis analysis of Aeromonas salmonicida ssp. salmonicida. FEMS Microbiol. Lett. 190: 163-166. https://doi.org/10.1111/j.1574-6968.2000.tb09280.x
  54. O'hIci B, Olivier, G, Powell. R. 2000. Genetic diversity of the fish pathogen Aeromonas salmonicida demonstrated by random amplified polymorphic DNA and pulsed-field gel electrophoresis analyses. Dis. Aquat. Organ. 39: 109-119. https://doi.org/10.3354/dao039109
  55. Martin-Carnahan A, Joseph SW. 2005. Aeromonadaceae. In: Bergey's manual of systematic bacteriology, 2nd Ed. Vol. 2. Springer. New York. USA.
  56. Roger F, Marchandin H, Jumas-Bilak, E, Kodjo, A, Lamy, B, colBVH Study Group. (2012). Multilocus genetics to reconstruct aeromonad evolution. BMC Microbiol. 12: 62. https://doi.org/10.1186/1471-2180-12-62
  57. Vincent AT, Trudel MV, Freschi L, Nagar V, Gagne-Thivierge, C, Levesque, RC, et al. 2016. Increasing genomic diversity and evidence of constrained lifestyle evolution due to insertion sequences in Aeromonas salmonicida. BMC Genomics 17: 44. https://doi.org/10.1186/s12864-016-2381-3
  58. Pfeiffer F, Zamora-Lagos MA, Blettinger M, Yeroslaviz A, Dahl A, Gruber S, et al. 2018. The complete and fully assembled genome sequence of Aeromonas salmonicida subsp. pectinolytica and its comparative analysis with other Aeromonas species: investigation of the mobilome in environmental and pathogenic strains. BMC Genomics 19: 20. https://doi.org/10.1186/s12864-017-4301-6
  59. Beaz-Hidalgo R, Hossain MJ, Liles MR, Figueras MJ. 2015. Strategies to avoid wrongly labelled genomes using as example the detected wrong taxonomic affiliation for Aeromonas genomes in the GenBank database. PLoS One 10: e0115813. https://doi.org/10.1371/journal.pone.0115813
  60. Han HJ, Kim DY, Kim WS, Kim CS, Jung SJ, Oh MJ, et al. 2011. Atypical Aeromonas salmonicida infection in the black rockfish, Sebastes schlegeli Hilgendorf, in Korea. J. Fish Dis. 34: 47-55. https://doi.org/10.1111/j.1365-2761.2010.01217.x
  61. Kim A, Nguyen, TL, Kim, DH. 2018. Complete genome sequence of the virulent Aeromonas salmonicida subsp. masoucida strain RFAS1. Genome Announc. 6: e00470-18.
  62. Beilstein F, Dreiseikelmann B. 2008. Temperate bacteriophage PhiO18P from an Aeromonas media isolate: characterization and complete genome sequence. Virology 373: 25-29. https://doi.org/10.1016/j.virol.2007.11.016
  63. Emond-Rheault JG, Vincent AT, Trudel MV, Brochu F, Boyle B, et al. 2015. Variants of a genomic island in Aeromonas salmonicida subsp. salmonicida link isolates with their geographical origins. Vet. Microbiol. 175: 68-76. https://doi.org/10.1016/j.vetmic.2014.11.014
  64. Vincent AT, Paquet VE, Bernatchez A, Tremblay DM, Moineau S, Charette SJ. 2017. Characterization and diversity of phages infecting Aeromonas salmonicida subsp. salmonicida. Sci. Rep. 7: 1-10. https://doi.org/10.1038/s41598-016-0028-x
  65. Labrie SJ, Samson JE, Moineau S. 2010. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8: 317-327. https://doi.org/10.1038/nrmicro2315
  66. Ljungberg O, Johansson N. 1977. Epizootiological studies on atypical Aeromonas salmonicida infections of Salmonids in Swedish fish farms, 1967-1977. Bull. Off. Int. Epiz. 87: 475-478.
  67. Hirvela-Koski V. 2005. Fish pathogens Aeromonas salmonicida and Renibacterium salmoninarum: diagnostic and epidemiological aspects. Academic Dissertation, University of Helsinki.
  68. Paterson, WD, Douey, D, Desautels D. 1980. Relationships between selected strains of typical and atypical Aeromonas salmonicida, Aeromonas hydrophila, and Haemophilus piscium. Can. J. Microbiol. 26: 588-598. https://doi.org/10.1139/m80-104
  69. Herman RL. 1968. Fish furunculosis. Trans. Am. Fish. Soc. 97: 221-230. https://doi.org/10.1577/1548-8659(1968)97[221:FF]2.0.CO;2
  70. Wood JW. 1967. Salmon disease report. Wash. Dept. Fish. Ann. Rep. 77: 111-112.
  71. Inglis V, Yimer E, Bacon EJ, Ferguson S. 1993. Plasmid-mediated antibiotic resistance in Aeromonas salmonicida isolated from Atlantic salmon, Salmo salar L., in Scotland. J. Fish Dis. 16: 593-599. https://doi.org/10.1111/j.1365-2761.1993.tb00896.x
  72. McIntosh D, Cunningham M, Ji B, Fekete FA, Parry EM, Clark SE, et al. 2008. Transferable, multiple antibiotic and mercury resistance in Atlantic Canadian isolates of Aeromonas salmonicida subsp. salmonicida is associated with carriage of an IncA/C plasmid similar to the Salmonella enterica plasmid pSN254. J. Antimicrob. Chemother. 61: 1221-1228. https://doi.org/10.1093/jac/dkn123
  73. Kim YS, Yoon JW, Han HJ, Suebsing R, Kim JH. 2011. Prevalence and characterization of typical Aeromonas salmonicida chum salmon isolates in Korea. Fish Aquat. Sci. 14: 347-354. https://doi.org/10.5657/FAS.2011.0347
  74. DePaola A, Flynn PA, McPhearson RM, Levy SB. 1988. Phenotypic and genotypic characterization of tetracycline- and oxytetracycline-resistant Aeromonas hydrophila from cultured channel catfish (Ictalurus punctatus) and their environments. Appl. Environ. Microbiol. 54: 1861-1863. https://doi.org/10.1128/AEM.54.7.1861-1863.1988
  75. Nawaz M, Sung K, Khan SA, Khan AA, Steele R. 2006. Biochemical and molecular characterization of tetracycline-resistant Aeromonas veronii isolates from catfish. Appl. Environ. Microbiol. 72: 6461-6466. https://doi.org/10.1128/AEM.00271-06
  76. Furushita M, Shiba T, Maeda T, Yahata M, Kaneoka A, Takahashi Y, et al. 2003. Similarity of tetracycline resistance genes isolated from fish farm bacteria to those from clinical isolates. Appl. Environ. Microbiol. 69: 5336-5342. https://doi.org/10.1128/AEM.69.9.5336-5342.2003
  77. Massicotte MA, Vincent AT, Schneider A, Paquet VE, Frenette M, Charette SJ. 2019. One Aeromonas salmonicida subsp. salmonicida isolate with a pAsa5 variant bearing antibiotic resistance and a pRAS3 variant making a link with a swine pathogen. Sci. Total Environ. 690: 313-320. https://doi.org/10.1016/j.scitotenv.2019.06.456
  78. Alcaide E, Blasco MD, Esteve C. 2010. Mechanisms of quinolone resistance in Aeromonas species isolated from humans, water and eels. Res. Microbiol. 161: 40-45. https://doi.org/10.1016/j.resmic.2009.10.006
  79. Jones BL, Wilcox MH. 1995. Aeromonas infections and their treatment. J. Antimicrob. Chemother. 35: 453-461. https://doi.org/10.1093/jac/35.4.453
  80. Giraud E, Blanc G, Bouju-Albert A, Weill FX, Donnay-Moreno C. 2004. Mechanisms of quinolone resistance and clonal relationship among Aeromonas salmonicida strains isolated from reared fish with furunculosis. J. Med. Microbiol. 53: 895-901. https://doi.org/10.1099/jmm.0.45579-0
  81. Varela AR, Nunes OC, Manaia CM. 2016. Quinolone resistant Aeromonas spp. as carriers and potential tracers of acquired antibiotic resistance in hospital and municipal wastewater. Sci. Total Environ. 542: 665-671. https://doi.org/10.1016/j.scitotenv.2015.10.124
  82. Gutsell JS. 1948. The value of certain drugs, especially sulfa drugs, in the treatment of furunculosis in brook trout, Salvelinus fontinalis. Trans. Am. Fish. Soc. 75: 186-199. https://doi.org/10.1577/1548-8659(1945)75[186:TVOCDE]2.0.CO;2
  83. Bullock GL, Stuckey HM, Chen PK. 1974. Corynebacterial kidney disease of salmonids: growth and serological studies on the causative bacterium. Appl. Microbiol. 28: 811-814. https://doi.org/10.1128/AEM.28.5.811-814.1974
  84. Inglis V, Soliman M, Higuera Ciapara I, Richards R. 1992. Amoxycillin in the control of furunculosis in Atlantic salmon parr. Vet. Rec. 130: 45-48. https://doi.org/10.1136/vr.130.3.45
  85. Stoffregen DA, Chako AJ, Backman S, Babish JG. 1993. Successful therapy of furunculosis in Atlantic salmon, Salmo salar L., using the fluoroquinolone antimicrobial agent enrofloxacin. J. Fish Dis. 16: 219-228. https://doi.org/10.1111/j.1365-2761.1993.tb01251.x
  86. Midtlyng PJ. 2014. Vaccination against furunculosis, pp. 185-199. In: Gudding R, Atle Lillehaug A, Evensen O (eds.), Fish vaccination, John Wiley & Sons, Chichester.
  87. Lillehaug A, Lunder T, Poppe TT. 1992. Field testing of adjuvanted furunculosis vaccines in Atlantic salmon, Salmo salar L. J. Fish Dis. 15: 485-496. https://doi.org/10.1111/j.1365-2761.1992.tb00680.x
  88. Ellis AE. 1997. Immunization with bacterial antigens: furunculosis. Dev. Biol. Stand. 90: 107-116.
  89. Midtlyng PJ. 1997. Vaccination against furunculosis, pp. 382-404. In: Bernoth EM, Ellis AE, Midtlyng PJ, Olivier G, Smith P (eds) Furunculosis: multidisciplinary fish disease research. Academic Press, San Diego, CA. USA.
  90. Melingen GO, Wergeland HI. 2002. Physiological effects of an oil-adjuvanted vaccine on out-of-season Atlantic salmon (Salmo salar L.) smolt. Aquaculture 214: 397-409. https://doi.org/10.1016/S0044-8486(01)00867-5
  91. Koppang EO, Haugarvoll E, Hordvik I, Aune L, Poppe TT. 2005. Vaccine-associated granulomatous inflammation and melanin accumulation in Atlantic salmon, Salmo salar L., white muscle. J. Fish. Dis. 28: 13-22 https://doi.org/10.1111/j.1365-2761.2004.00583.x
  92. Berg A, Rodseth OM, Hansen T. 2007. Fish size at vaccination influence the development of side-effects in Atlantic salmon (Salmo salar). Aquaculture 265: 9-15 https://doi.org/10.1016/j.aquaculture.2007.02.014
  93. Coscelli GA, Bermúdez R, Losada AP, Santos Y, Quiroga MI. 2015. Vaccination against Aeromonas salmonicida in turbot (Scophthalmus maximus L.): study of the efficacy, morphological changes and antigen distribution. Aquaculture 445: 22-32 https://doi.org/10.1016/j.aquaculture.2015.04.011
  94. Robertson PAW, O'Dowd C, Burrells C, Williams P, Austin B. 2000. Use of Carnobacterium sp. as a probiotic for Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss, Walbaum). Aquaculture 185: 235-243. https://doi.org/10.1016/S0044-8486(99)00349-X
  95. Balcazar JL, Vendrell D, de Blas I, Ruiz-Zarzuela I, Muzquiz JL. 2009. Effect of Lactococcus lactis CLFP 100 and Leuconostoc mesenteroides CLFP 196 on Aeromonas salmonicida infection in brown trout (Salmo trutta). J. Mol. Microbiol. Biotechnol. 17: 153-157. https://doi.org/10.1159/000226588
  96. Sica MG, Brugnoni LI, Marucci PL, Cubitto MA. 2012. Characterization of probiotic properties of lactic acid bacteria isolated from an estuarine environment for application in rainbow trout (Oncorhynchus mykiss, Walbaum) farming. Antonie Van Leeuwenhoek 101: 869-879. https://doi.org/10.1007/s10482-012-9703-5
  97. Sahu MK, Swarnakumar NS, Sivakumar K, Thangaradjou T, Kannan L. 2008. Probiotics in aquaculture: importance and future perspectives. Indian. J. Microbiol. 48: 299-308. https://doi.org/10.1007/s12088-008-0024-3
  98. Anderson DP, Siwicki AK. 1994. Duration of protection against Aeromonas salmonicida in brook trout immuno-stimulated with glucan or chitosan by injection or immersion. Prog. Fish-Cult. 56: 258-261. https://doi.org/10.1577/1548-8640(1994)056<0258:DOPAAS>2.3.CO;2
  99. Thomas J, Jerobin J, Seelan TSJ, Thanigaivel S, Vijaya-kumar S, Mukherjee A, Chandrasekaran N. 2013. Studies on pathogenecity of Aeromonas salmonicida in catfish Clarias batrachus and control measures by neem nanoemulsion. Aquaculture 396-399: 71-75. https://doi.org/10.1016/j.aquaculture.2013.02.024
  100. Turker H, Yildirim AB. 2015. Screening for antibacterial activity of some Turkish plants against fish pathogens: a possible alternative in the treatment of bacterial infections. Biotechnol. Biotechnol. Equip. 29: 281-288. https://doi.org/10.1080/13102818.2015.1006445
  101. Starliper CE, Ketola HG, Noyes AD, Schill WB, Henson FG, Chalupnicki MA, et al. 2015. An investigation of the bactericidal activity of selected essential oils to Aeromonas spp. J. Adv. Res. 6: 89-97. https://doi.org/10.1016/j.jare.2013.12.007
  102. Ackermann, H. W. 2007. 5500 Phages examined in the electron microscope. Arch. Virol. 152: 227-243. https://doi.org/10.1007/s00705-006-0849-1
  103. Suttle CA. 2005. Viruses in the sea. Nature 437: 356-361. https://doi.org/10.1038/nature04160
  104. Calendar R. 2005. The Bacteriophages 2nd Ed. Oxford Univ. Press, New York.
  105. d'Herelle F. 1918. Technique de la recherche du microbe filtrant bacteriophage (Bacteriophagum intestinale). C. R. Soc. Biol. 81: 1160-1162.
  106. Bradley DE. 1967. Ultrastructure of bacteriophage and bacteriocins. Bacteriol. Rev. 31: 230-314. https://doi.org/10.1128/MMBR.31.4.230-314.1967
  107. Adams MJ, Lefkowitz EJ, King, AM, et al. 2017. 50 Years of the international committee on taxonomy of viruses: progress and prospects. Arch. Virol. 162: 1441-1446. https://doi.org/10.1007/s00705-016-3215-y
  108. Chibani CM, Farr A, Klama S, Dietrich S, Liesegang H. 2019. Classifying the unclassified: a phage classification method. Viruses 11: 195. https://doi.org/10.3390/v11020195
  109. Wheeler DL. 2000. Database resources of the national center for biotechnology information. Nucleic Acids Res. 28: 10-14. https://doi.org/10.1093/nar/28.1.10
  110. Ackermann HW. 2009. Phage classification and characterization, pp.127-140. In Bacteriophages, Humana press.
  111. Dion MB, Oechslin F, Moineau S. 2020. Phage diversity, genomics and phylogeny. Nat. Rev. Microbiol. 18: 125-138. https://doi.org/10.1038/s41579-019-0311-5
  112. Krupovic M, Dutilh BE, Adriaenssens EM, et al. 2016. Taxonomy of prokaryotic viruses: update from the ICTV bacterial and archaeal viruses subcommittee. Arch. Virol. 161: 1095-1099. https://doi.org/10.1007/s00705-015-2728-0
  113. Lefkowitz EJ, Dempsey DM, Hendrickson RC, Orton RJ, Siddell SG, Smith DB. 2018. Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res. 46(D1): D708-D717. https://doi.org/10.1093/nar/gkx932
  114. Adriaenssens EM, Sullivan MB, Knezevic P, et al. 2020. Taxonomy of prokaryotic viruses: 2018-2019 update from the ICTV Bacterial and Archaeal Viruses Subcommittee. Arch. Virol. 165: 1253-1260. https://doi.org/10.1007/s00705-020-04577-8
  115. Simmonds P, Adams MJ, Benko, M, et al. 2017. Consensus statement: virus taxonomy in the age of metagenomics. Nat. Rev. Microbiol. 15: 161-168. https://doi.org/10.1038/nrmicro.2016.177
  116. Adriaenssens E, Brister JR. 2017. How to name and classify your phage: an informal guide. Viruses 9: 70. https://doi.org/10.3390/v9040070
  117. Young R, Wang IN, Roof WD. 2000. Phages will out: strategies of host cell lysis. Trends Microbiol. 8: 120-128. https://doi.org/10.1016/S0966-842X(00)01705-4
  118. Brussow H, Canchaya C, Hardt WD. 2004. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68: 560-602. https://doi.org/10.1128/MMBR.68.3.560-602.2004
  119. Penades JR, Chen J, Quiles-Puchalt N, Carpena N, Novick RP. 2015. Bacteriophage-mediated spread of bacterial virulence genes. Curr. Opin. Microbiol. 23: 171-178. https://doi.org/10.1016/j.mib.2014.11.019
  120. Merril CR, Scholl D, Adhya SL. 2003. The prospect for bacteriophage therapy in Western medicine. Nat. Rev. Drug Discov. 2: 489-497. https://doi.org/10.1038/nrd1111
  121. Touchon M, de Sousa JAM, Rocha EP. 2017. Embracing the enemy: the diversification of microbial gene repertoires by phagemediated horizontal gene transfer. Curr. Opin. Microbiol. 38: 66-73. https://doi.org/10.1016/j.mib.2017.04.010
  122. Brown-Jaque M, Calero-Caceres W, Muniesa M. 2015. Transfer of antibiotic-resistance genes via phage-related mobile elements. Plasmid 79: 1-7. https://doi.org/10.1016/j.plasmid.2015.01.001
  123. Stern A, Sorek R. 2011. The phage-host arms race: shaping the evolution of microbes. BioEssays 33: 43-51. https://doi.org/10.1002/bies.201000071
  124. Shabbir MA, Hao H, Shabbir MZ, Wu Q, Sattar A, Yuan Z. 2016. Bacteria vs. bacteriophages: parallel evolution of immune arsenals. Front. Microbiol. 7: 1292.
  125. Weinbauer MG. 2004. Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 28: 127-181. https://doi.org/10.1016/j.femsre.2003.08.001
  126. Sime-Ngando T. 2014. Environmental bacteriophages: viruses of microbes in aquatic ecosystems. Front. Microbiol. 5: 355. https://doi.org/10.3389/fmicb.2014.00355
  127. Virgin HW. 2014. The virome in mammalian physiology and disease. Cell 157: 142-150. https://doi.org/10.1016/j.cell.2014.02.032
  128. Zablocki O, Adriaenssens EM, Cowan D. 2016. Diversity and ecology of viruses in hyperarid desert soils. Appl. Environ. Microbiol. 82: 770-777. https://doi.org/10.1128/AEM.02651-15
  129. Freifelder DM. 1987. Microbial Genetics, Jones and Bartlett, Portolla Valley, CA
  130. Weinbauer MG, Suttle CA. 1996. Potential significance of lysogeny to bacteriophage production and bacterial mortality in coastal waters of the gulf of Mexico. Appl. Environ. Microbiol. 62: 4374-4380. https://doi.org/10.1128/AEM.62.12.4374-4380.1996
  131. Ackermann HW, DuBow MS.1987. Viruses of prokaryotes. CRC press.
  132. Touchon M, Bernheim A, Rocha EP. 2016. Genetic and life-history traits associated with the distribution of prophages in bacteria. ISME J. 10: 2744-2754. https://doi.org/10.1038/ismej.2016.47
  133. Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. 2017 Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 11: 1511-1520. https://doi.org/10.1038/ismej.2017.16
  134. Almeida A, Cunha A, Gomes NCM, Alves E, Costa L, Faustino MAF. 2009. Phage therapy and photodynamic therapy: low environmental impact approaches to inactivate microorganisms in fish farming plants. Mar. Drugs 7: 268-313. https://doi.org/10.3390/md7030268
  135. Housby JN, Mann NH. 2009. Phage therapy. Drug Discov. Today 14: 536-540. https://doi.org/10.1016/j.drudis.2009.03.006
  136. Alisky J, Iczkowski K, Rapoport A, Troitsky N. 1998. Bacteriophages show promise as antimicrobial agents. J. Infect. 36: 5-15. https://doi.org/10.1016/S0163-4453(98)92874-2
  137. Barrow P, Lovell M, Berchieri A. 1998. Use of lytic bacteriophage for control of experimental Escherichia coli septicemia and meningitis in chickens and calves. Clin. Diagn. Lab. Immunol. 5: 294-298. https://doi.org/10.1128/CDLI.5.3.294-298.1998
  138. Soothill JS. 1992. Treatment of experimental infections of mice with bacteriophages. J. Med. Microbiol. 37: 258-261. https://doi.org/10.1099/00222615-37-4-258
  139. Hagens S, Habel A, Ahsen U, Gabain A, Blasi U. 2004. Therapy of experimental Pseudomonas infections with a nonreplicating genetically modified phage. Antimicrob. Agents Chemother. 48: 3817-3822. https://doi.org/10.1128/AAC.48.10.3817-3822.2004
  140. Watanabe R, Matsumoto T, Sano G, Ishii Y, Tateda K, Sumiyama Y, et al. 2007. Efficacy of bacteriophage therapy against gut-derived sepsis caused by Pseudomonas aeruginosa in mice. Antimicrob. Agents Chemother. 51: 446-452. https://doi.org/10.1128/AAC.00635-06
  141. Wills QF, Kerrigan C, Soothill JS. 2005. Experimental bacteriophage protection against Staphylococcus aureus abscesses in a rabbit model. Antimicrob. Agents Chemother. 49: 1220-1221. https://doi.org/10.1128/AAC.49.3.1220-1221.2005
  142. Biswas B, Adhya S, Washart P, Paul B, Trostel AN, Powell B, et al. 2002. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect. Immun. 70: 204-210. https://doi.org/10.1128/IAI.70.1.204-210.2002
  143. Jado I, Lopez R, Garcia E, Fenoll A, Casal J, Garcia P. 2003. Phage lytic enzymes as therapy for antibiotic-resistant Streptococcus pneumoniae infection in a murine sepsis model. J. Antimicrob. Chemother. 52: 967-973. https://doi.org/10.1093/jac/dkg485
  144. Cao J, Sun Y, Berglindh T, Mellgard B, Li Z, Mardh B, et al. 2000. Helicobacter pylori-antigen-binding fragments expressed on the filamentous M13 phage prevent bacterial growth. Biochim. Biophys. Acta 1474: 107-113. https://doi.org/10.1016/S0304-4165(00)00005-2
  145. Fiorentin L, Vieira N, Barioni W. 2005. Use of lytic bacteriophages to reduce Salmonella enteritidis in experimentally contaminated chicken cuts. Rev. Bras. Cienc. Avic. 7: 255-260. https://doi.org/10.1590/S1516-635X2005000400010
  146. Toro H, Price SB, McKee S, Hoerr FJ, Krehling J, Perdue M, et al. 2005. Use of bacteriophages in combination with competitive exclusion to reduce Salmonella from infected chickens. Avian Dis. 49: 118-124. https://doi.org/10.1637/7286-100404R
  147. Brussow H. 2005. Phage therapy: the Escherichia coli experience. Microbiology 151: 2133-2140. https://doi.org/10.1099/mic.0.27849-0
  148. Vandenheuvel D, Lavigne R, Brussow H. 2015. Bacteriophage therapy: advances in formulation strategies and human clinical trials. Ann. Rev. Virol. 2: 599-618. https://doi.org/10.1146/annurev-virology-100114-054915
  149. Goode D, Allen VM, Barrow PA. 2003. Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophages. Appl. Environ. Microbiol. 69: 5032-5036. https://doi.org/10.1128/AEM.69.8.5032-5036.2003
  150. Huff W, Huff G, Rath N, Balog J, Donoghue A. 2005. Alternatives to antibiotics: utilization of bacteriophage to treat colibacillosis and prevent foodborne pathogens. Poult. Sci. 84: 655-659. https://doi.org/10.1093/ps/84.4.655
  151. Leverentz B, Conway WS, Alavidze Z, Janisiewicz WJ, Fuchs Y, Camp MJ, et al. 2001. Examination of bacteriophage as a biocontrol method for Salmonella on fresh-cut fruit: a model study. J. Food Prot. 64: 1116-1121. https://doi.org/10.4315/0362-028X-64.8.1116
  152. Flaherty JE, Somodi GC, Jones JB, Harbaugh BK, Jackson LE. 2000. Control of bacterial spot on tomato in the greenhouse and field with H-mutant bacteriophages. Hort. Sci. 35: 882-884.
  153. Withey S, Cartmell E, Avery LM, Stephenson T. 2005. Bacteriophages-potential for application in wastewater treatment processes. Sci. Total Environ. 339: 1-18. https://doi.org/10.1016/j.scitotenv.2004.09.021
  154. Shao ZJ. 2001. Aquaculture pharmaceuticals and biologicals: current perspectives and future possibilities. Adv. Drug Deliv. Rev. 50: 229-243. https://doi.org/10.1016/S0169-409X(01)00159-4
  155. Thornber, K, Verner‐Jeffreys D, Hinchliffe S, Rahman MM, Bass D, Tyler CR. 2020. Evaluating antimicrobial resistance in the global shrimp industry. Rev. Aquac. (in press). https://doi.org/10.1111/raq.12221
  156. Park KH, Kato H, Nakai T, Muroga K. 1998. Phage typing of Lactococcus garvieae (formerly Enterococcus seriolicida) a pathogen of cultured yellowtail. Fisheries Sci. 64: 62-64. https://doi.org/10.2331/fishsci.64.62
  157. Yamamoto A, Maegawa T. 2008. Phage typing of Edwardsiella tarda from eel farm and diseased eel. Aquac. Sci. 56: 611-612.
  158. Bradley DE. 1965. The isolation and morphology of some new bacteriophages specific for Bacillus and Acetobacter species. J. Gen. Microbiol. 41: 233-241. https://doi.org/10.1099/00221287-41-2-233
  159. Ackermann HW, Dauguet C, Paterson WD, Popoff M, Rouf MA, Vieu JF. 1985. Aeromonas bacteriophages: reexamination and classification, pp. 175-199. In Annales de l'Institut Pasteur/Virologie (Vol. 136, No. 2). Elsevier, Masson.
  160. Paterson WD, Douglas RJ, Grinyer I, McDermott LA. 1969. Isolation and preliminary characterization of some Aeromonas salmonicida bacteriophages. J. Fish Res. Can. 26: 629-632. https://doi.org/10.1139/f69-056
  161. Wiebe WJ. Liston J. 1968. Isolation and characterization of a marine bacteriophage. Marine Biol. 1: 244-249. https://doi.org/10.1007/BF00347117
  162. Popoff M. 1971. Etude sur les Aeromonas salmonicida. II. Caracterisation des bacteriophages actifs sur les Aeromonas salmonicida et lysotypie. Ann. Rech. Vet. 2: 33-45.
  163. Ishiguro E, Kay W, Trust T. 1980. Temperate bacteriophages for Aeromonas salmonicida. FEMS Microbiol. Lett. 8: 247-250. https://doi.org/10.1111/j.1574-6968.1980.tb05088.x
  164. Ishiguro EE, Ainsworth T, Shaw DH, Kay WW, Trust TJ. 1983. A lipopolysaccharide-specific bacteriophage for Aeromonas salmonicida. Can. J. Microbiol. 29: 1458-1461. https://doi.org/10.1139/m83-223
  165. Ishiguro E, Ainsworth T, Harkness R, Kay W, Trust T. 1984. A temperate bacteriophage specific for strains of Aeromonas salmonicida possessing A-layer, a cell surface virulence factor. Curr. Microbiol. 10: 199-202. https://doi.org/10.1007/BF01627255
  166. Rodgers CJ, Pringle JH, Mccarthy DH, Austin B. 1981. Quantitative and qualitative studies of Aeromonas salmonicida bacteriophage. J. Gen. Microbiol. 125: 335-345.
  167. Ahne W, Capousek A, Popp W. 2000. Bacteriophage typing locates source and spread of Aeromonas salmonicida. Bull. Eur. Assoc. Fish Pathol. 20: 28-30.
  168. Fauquet C, Mayo M, Maniloff J, Desselberger U, Ball A. 2005. Virus Taxonomy. pp. 35-85. VIIIth Report of the International Committee on Taxonomy of Viruses.
  169. Petrov VM, Nolan JM, Bertrand C, Levy D, Desplats C, Krisch HM, et al. 2006. Plasticity of the gene functions for DNA replication in the T4-like phages. J. Mol. Biol. 361: 46-68. https://doi.org/10.1016/j.jmb.2006.05.071
  170. Comeau AM, Bertrand C, Letarov A, Tetart F, Krisch HM. 2007. Modular architecture of the T4 phage superfamily: a conserved core genome and a plastic periphery. Virology 362: 384-396. https://doi.org/10.1016/j.virol.2006.12.031
  171. Iranzo J, Krupovic M, Koonin EV. 2016. The double-stranded DNA virosphere as a modular hierarchical network of gene sharing. MBio 7: e00978-16.
  172. Tetart F, Desplats C, Kutateladze M, Monod C, Ackermann HW, Krisch HM. 2001. Phylogeny of the major head and tail genes of the wide-ranging T4-type bacteriophages. J. Bacteriol. 183: 358-366. https://doi.org/10.1128/JB.183.1.358-366.2001
  173. Nolan J, Petrov V, Bertrand C, Krisch H, Karam J. 2006. Genetic diversity among five T4-like bacteriophages. Virol. J. 3: 30. https://doi.org/10.1186/1743-422X-3-30
  174. Lavigne R, Darius P, Summer EJ, Seto D, Mahadevan P, Nilsson AS, et al. 2009. Classification of Myoviridae bacteriophages using protein sequence similarity. BMC Microbiol. 9: 224. https://doi.org/10.1186/1471-2180-9-224
  175. Petrov VM, Ratnayaka S, Karam JD. 2010. Genetic insertions and diversification of the PolB-type DNA polymerase (gp43) of T4-related phages. J. Mol. Biol. 395: 457-474. https://doi.org/10.1016/j.jmb.2009.10.054
  176. Comeau AM, Tremblay D, Moineau S, Rattei T, Kushkina AI, Tovkach FI, et al. 2012. Phage morphology recapitulates phylogeny: the comparative genomics of a new group of myoviruses. PLoS One 7: e40102. https://doi.org/10.1371/journal.pone.0040102
  177. Kim JH, Son JS, Choi YJ, Choresca CH, Shin SP, Han JE, et al. 2012. Complete genomic sequence of a T4-like bacteriophage, phiAS4, infecting Aeromonas salmonicida subsp. salmonicida. Arch. Virol. 157: 391-395. https://doi.org/10.1007/s00705-011-1175-9
  178. Kim JH, Son JS, Choi YJ, Choresca CH, Shin SP, Han JE, et al. 2012. Complete genome sequence and characterization of a broadhost range T4-like bacteriophage phiAS5 infecting Aeromonas salmonicida subsp. salmonicida. Vet. Microbiol. 157: 164-171. https://doi.org/10.1016/j.vetmic.2011.12.016
  179. Kim JH, Son JS, Choresca CH, Shin SP, Han JE, Jun JW, et al. 2012. Complete genome sequence of bacteriophage phiAS7, a T7-like virus that infects Aeromonas salmonicida subsp. salmonicida. J. Virol. 2894-2895.
  180. Kim JH, Son JS, Choi YJ, Choresca CH, Shin SP, Han JE. et al. 2012. Isolation and characterization of a lytic Myoviridae bacteriophage PAS-1 with broad infectivity in Aeromonas salmonicida. Curr. Microbiol. 64: 418-426. https://doi.org/10.1007/s00284-012-0091-x
  181. Vincent AT, Paquet VE, Bernatchez A, Tremblay DM, Moineau S, Charette SJ. 2017. Characterization and diversity of phages infecting Aeromonas salmonicida subsp. salmonicida. Sci. Rep. 7: 1-10. https://doi.org/10.1038/s41598-016-0028-x
  182. Chen L, Yuan S, Liu Q, Mai G, Yang J, Deng D, et al. 2018. In vitro design and evaluation of phage cocktails against Aeromonas salmonicida. Front. Microbiol. 9: 1476. https://doi.org/10.3389/fmicb.2018.01476
  183. Yang Z, Yuan S, Chen L, Liu Q, Zhang H, Ma Y, et al. 2018. Complete genome analysis of bacteriophage AsXd-1, a new member of the genus Hk97virus, family Siphoviridae. Arch. Virol. 163: 3195-3197. https://doi.org/10.1007/s00705-018-3977-5
  184. Moreirinha C, Osorio N, Pereira C, Simoes S, Delgadillo I, Almeida A. 2018. Protein expression modifications in phage-resistant mutants of Aeromonas salmonicida after AS-A phage treatment. Antibiotics 7: 21. https://doi.org/10.3390/antibiotics7010021
  185. Zhou Y. Yuan S. Yan T. Ma Y. 2019. Isolation and characterization of a novel lytic T4-like bacteriophage Asfd-1 infecting Aeromonas salmonicida. J. Integr. Technol. 8: 1-9.
  186. Kavagutti VS, Andrei AS, Mehrshad M, Salcher MM, Ghai R. 2019. Phage-centric ecological interactions in aquatic ecosystems revealed through ultra-deep metagenomics. Microbiome 7: 1-15. https://doi.org/10.1186/s40168-018-0604-3
  187. Chopyk J, Nasko DJ, Allard S, Callahan MT, Bui A, Ferelli AMC, et al. 2020. Metagenomic analysis of bacterial and viral assemblages from a freshwater creek and irrigated field reveals temporal and spatial dynamics. Sci. Total Environ. 706: 135395. https://doi.org/10.1016/j.scitotenv.2019.135395
  188. Bertozzi Silva J, Storms Z, Sauvageau D. 2016. Host receptors for bacteriophage adsorption. FEMS Microbiol. Lett. 363: fnw002. https://doi.org/10.1093/femsle/fnw002
  189. Paquet VE, Vincent AT, Moineau S, Charette SJ. 2019. Beyond the A‐layer: adsorption of lipopolysaccharides and characterization of bacteriophage‐insensitive mutants of Aeromonas salmonicida subsp. salmonicida. Mol. Microbiol. 112: 667-677. https://doi.org/10.1111/mmi.14308
  190. Wu JL, Lin HM, Jan L, Hsu YL, Chang LH. 1981. Biological control of fish bacterial pathogen, Aeromonas hydrophila, by bacteriophage AH 1. Fish Pathol. 15: 271-276. https://doi.org/10.3147/jsfp.15.271
  191. Austin B, Austin DA. 1987. Bacterial fish pathogens: disease in farmed and wild fish, pp. 112-117. Ellis Horwood Ltd., Chichester, United Kingdom.
  192. Verner-Jeffreys DW, Algoet M, Pond MJ, Virdee HK, Bagwell NJ, Roberts EG. 2007. Furunculosis in Atlantic salmon (Salmo salar L.) is not readily controllable by bacteriophage therapy. Aquaculture 270: 475-484. https://doi.org/10.1016/j.aquaculture.2007.05.023
  193. Duarte J, Pereira C, Moreirinha C, Salvio R, Lopes A, Wang D, et al. 2018. New insights on phage efficacy to control Aeromonas salmonicida in aquaculture systems: an in vitro preliminary study. Aquaculture 495: 970-982. https://doi.org/10.1016/j.aquaculture.2018.07.002
  194. Nikapitiya C, Dananjaya SHS, Chandrarathna HPSU, Senevirathne A, De Zoysa M, Lee J. 2019. Isolation and characterization of multidrug resistance Aeromonas salmonicida subsp. salmonicida and its infecting novel phage ASP-1 from goldfish (Carassius auratus). Indian J. Microbiol. 59: 161-170. https://doi.org/10.1007/s12088-019-00782-5
  195. Feckaninova A, Koscova J, Mudronova D, Popelka P, Toropilova J. 2017. The use of probiotic bacteria against Aeromonas infections in salmonid aquaculture. Aquaculture 469: 1-8. https://doi.org/10.1016/j.aquaculture.2016.11.042
  196. Expert Round Table on Acceptance and Re‐Implementation of Bacteriophage Therapy. 2016. Silk route to the acceptance and re‐implementation of bacteriophage therapy. Biotechnol. J. 11: 595-600. https://doi.org/10.1002/biot.201600023
  197. Zaczek M, Lusiak-Szelachowska M, Jonczyk-Matysiak E, Weber-Dabrowska B, Miedzybrodzki R, Owczarek B, et al. 2016. Antibody production in response to staphylococcal MS-1 phage cocktail in patients undergoing phage therapy. Front. Microbiol. 7: 1681.
  198. O'Neill JG. 1979. The immune response of the brown trout, Salmo trutta, L. to MS2 bacteriophage: immunogen concentration and adjuvants. J. Fish Biol. 15: 237-248. https://doi.org/10.1111/j.1095-8649.1979.tb03586.x
  199. Kalatzis PG, Castillo D, Katharios P, Middelboe M. 2018. Bacteriophage interactions with marine pathogenic Vibrios: implications for phage therapy. Antibiotics 7: 15. https://doi.org/10.3390/antibiotics7010015
  200. Letchumanan V, Chan KG, Pusparajah P, Saokaew S, Duangjai A, Goh BH, et al. 2016. Insights into bacteriophage application in controlling Vibrio species. Front. Microbiol. 7: 1114.
  201. Petrov VM, Ratnayaka S, Nolan JM, Miller ES, Karam JD. 2010. Genomes of the T4-related bacteriophages as windows on microbial genome evolution. Virol. J. 7: 292. https://doi.org/10.1186/1743-422X-7-292

Cited by

  1. Bacteriophages against enteropathogens: rediscovery and refinement of novel antimicrobial therapeutics vol.34, pp.5, 2020, https://doi.org/10.1097/qco.0000000000000772
  2. Microbe Profile: Aeromonas salmonicida: an opportunistic pathogen with multiple personalities vol.167, pp.5, 2020, https://doi.org/10.1099/mic.0.001052
  3. Microbial Musings - May 2021 vol.167, pp.5, 2020, https://doi.org/10.1099/mic.0.001069
  4. Phage Therapy as a Focused Management Strategy in Aquaculture vol.22, pp.19, 2020, https://doi.org/10.3390/ijms221910436