DOI QR코드

DOI QR Code

Experimental Investigation on Vibration Control Performances of the Piezoelectric Hybrid Mount

압전 하이브리드 마운트의 진동제어 성능에 대한 실험적 고찰

  • Han, Young-Min (Division of Automotive Engineering, Ajou Motor College)
  • 한영민 (아주자동차대학 자동차계열)
  • Received : 2020.09.14
  • Accepted : 2020.11.20
  • Published : 2020.11.28

Abstract

A hybrid mount featuring rubber element and piezoelectric actuator is devised to reduce vibration when starting a vehicle engine. As a first step, a passive mount adopting rubber element is manufactured and its dynamic characteristics are experimentally evaluated. After evaluating dynamic characteristics of the manufactured inertial piezoelectric actuator, the proposed hybrid mount is then established by integrating the piezoelectric actuator with the rubber element for performance improvement at non-resonant high frequencies. A mathematical model of the established active vibration control system is formulated and expressed in the state space form. Subsequently, sliding mode controller (SMC) is designed to attenuate the vibration transmitted from the base excitation. Finally, control performances of the proposed hybrid mount are evaluated such as transmissibility in frequency domain and time responses.

본 연구에서는 자동차 엔진에 적용되는 고무마운트의 성능을 극대화하여 시동초기 진동특성를 개선하기 위해 능동형 하이브리드 마운트를 제안하고 진동절연 성능을 실험적으로 고찰하고자 한다. 제안된 하이브리드 마운트는 수동형 고무요소와 능동형 압전작동기로 구성되었으며, 동적 특성과 제어력의 실험적 고찰을 통해 하이브리드 마운트가 제작되었다. 수직방향의 진동을 고려하여 관성질량을 갖는 압전-고무 하이브리드 마운트의 동적 지배방정식을 수학적으로 모델링하였으며 상태 공간 방정식으로 표현하였다. 본 연구에서는 진동을 절연하기 위해 강건한 슬라이딩 모드 제어기가 구성되어 진동제어 실험에 적용되었다. 마지막으로 넓은 주파수 영역에서 진동제어 성능을 실험적으로 고찰하였으며 주파수 영역에서의 전달율과 시간영역에서 진동절연 성능을 평가하였다.

Keywords

References

  1. W. Fedor, J. Kazour, J. Haller, K. Dauer & D. Kabasin. (2016). GDi cold start emission reduction with heated fuel. SAE Technical Paper, 2016-01-0825.
  2. M. Bernuchon. (1984). A new generation of engine nounts, SAE, 840259, 230-236.
  3. G. Kim & R. Singh. (1995). A study of passive and adaptive hydraulic engine mount systems with emphasis on non-linear characteristics. Journal of Sound and Vibration, 179(3), 427-453. https://doi.org/10.1006/jsvi.1995.0028
  4. S. R. Hong & S. B. Choi. (2005). Vibration control of a structural system using magneto-rheological fluid mount. Journal of Intelligent Material System and Structures, 16(11-12), 931-936. https://doi.org/10.1177/1045389X05053917
  5. E. W. Williams, S. G. Rigby, J. L. Sproston & R. Stanway. (1993). Electrorheological fluids applied to an automotive engine mount. Journal of Non-Newtonian Fluid Mechanics, 47, 221-238. https://doi.org/10.1016/0377-0257(93)80052-D
  6. J. Y. Andrew & H. H. Colin. (1996). Control of flexural vibration in stiffened structures using multiple piezoceramic actuators. Applied Acoustics, 49(1), 17-48. https://doi.org/10.1016/0003-682X(96)00004-7
  7. K. Kowalczyk, F. Svaricek, C. Bohn & H. J. Karkosch. (2004). Active control of engine induced vibrations. International Conference on New Actuators, 275-278.
  8. C. Niezrecki, D. Brei, S. Balakrishnan & A. Moskalik. (2001). Piezoelectric actuation: state of the art. The Shock and Vibration Digest, 33(4), 269-280. https://doi.org/10.1177/058310240103300401
  9. S. S.Muhlen. (1990). Design of an optimized high-oower ultrasonic transducer, IEEE Ultrasonics Symposium, Honolulu, USA, 1631-1634.
  10. F. X. Li, R. K. N. D. Rajapakse, D. Mumford & M. Gadala. (2008). Quasi-static Thermo-electro-mechanical Behaviour of Piezoelectric Stack Actuators. Smart Materials and Structures, 17(1), 1-10.
  11. S. B. Choi & Y. M. Han. (2010). Piezoelectric Actuators: Control Applications of Smart Materials. CRC Press.
  12. H. Jung, Y. An & J. Park. (2018). Development of an Idle-Stop-and-Go System Controller for City Buses, Journal of the Korean Society of Manufacturing Technology Engineers, 27(6), 546-551. https://doi.org/10.7735/ksmte.2018.27.6.546
  13. C. Howard. (1999). Active isolation of machinery vibration from flexible structures, Ph. D. Dissertation, Department of Mechanical Engineering, University of Adelaide, South Australia, Australia.
  14. S. B. Choi, Y. T. Choi & D. W. Park. (2000). A sliding mode control of a full-car electrorheological suspension system via hardware in-the-loop simulation. Journal of Dynamic Systems, Measurement, and Control, 122, 114-121. https://doi.org/10.1115/1.482435
  15. C. Edwards & S. K. Spurgeon. (1998) Sliding mode control: theory and application, Taylor & Francis Ltd