DOI QR코드

DOI QR Code

A Convergence Study on the Reaction Injection Mold Using Ultra High Strength Concrete

초고강도 콘크리트를 이용한 반응 사출 금형에 관한 융합 연구

  • Jaung, Jae-Dong (Division of Architectural Engineering, Daegu University) ;
  • Kim, Hong-Seok (School of Mechanical Engineering, Daegu University)
  • 정재동 (대구대학교 건축공학과) ;
  • 김홍석 (대구대학교 기계공학부)
  • Received : 2020.09.17
  • Accepted : 2020.11.20
  • Published : 2020.11.28

Abstract

There is an increasing demands of more efficient and economical ways of mold making according to the spreading trend of small quantity batch production system. Therefore, this study aims to examine the applicability of ultra high strength concrete, which has a compressive strength over 80MPa, as a mold material. The ultra high strength concrete has several advantages such as lower cost, lighter weight and convenience of shape making compared to the traditional mold materials. Although the strength of the ultra high strength concrete is lower than that of the tool steel, it was considered to be useful for small batch processes with relatively low pressure. Therefore, in this study, a prototype mold for reaction injection molding of polyurethane was developed using ultra high strength concrete and it was examined that the possibility and characteristics of concrete as a mold material.

일반적으로 금형은 소재 부품 분야에서 제품의 대량 생산에 널리 이용되는 중요한 생산 도구이다. 그러나 최근 다품종 소량생산의 확산에 따라 보다 효율적이고 경제적인 금형에 대한 요구가 증가하고 있으며, 본 연구에서는 금형 재료로서 초고강도 콘크리트의 적용 가능성을 모색해 보고자 한다. 초고강도 콘크리트는 80MPa 이상의 압축강도를 갖는 콘크리트로서 금속에 비해 저렴하고 무게가 가벼우며 조형이 용이하다는 장점을 가지고 있다. 초고강도 콘크리트가 비록 일반 금형 재료인 공구강에 비해 강도는 낮지만 상대적으로 낮은 응력이 발생하는 성형 공정에 사용된다면 금형 재료로서 충분히 활용 가능하다고 판단하였다. 따라서 본 연구에서는 플라스틱 저압 생산공정의 하나인 폴리우레탄 반응사출 성형공정용 시작 금형에 초고강도 콘크리트를 적용해 보았으며, 금형 제작 및 성형 과정을 통하여 금형 소재로서의 가능성과 특징을 고찰해 보았다.

Keywords

References

  1. M. Hawryluk. (2016). Review of Selected Methods of Increasing the Life of Forging Tools in Hot Die Forging Processes, Archieves of Civil and Mechanical Engineering, 16(4), 845-866. DOI: 10.1016/j.acme.2016.06.001
  2. D. H. Kim. (2018). A Study on the Design Effeciency of Mold Design Using Design Automation Method in the CAD System, Journal of the Korean Society of Mechanical Technology, 20(6), 824-829. DOI: 10.17958/ksmt.20.6.201812.824
  3. Y. J. Kim. (2014). FE Analysis of Forging Process for Improving Tool Life in Hot Forging of CV Joint Outer Race, Journal of The Korean Society of Manufacturing Process Engineers, 13(3), 56-62. DOI: 10.14775/ksmpe.2014.13.3.056
  4. Y. H. Seo. (2020). Research on Prediction and Reduction Method of Manufacturing Cost of Automobile Steering Parts Based on Quantitative Prediction Technology of Cold Forging Mold Life, Journal of the Korean Society of Mechanical Technology, 22(4), 726-732. DOI: 10.17958/ksmt.22.4.202008.726
  5. K. H. Kim & J. S. Kim. (2012). Development of Silicone Mold Applying Corrosive Pattern of Tactile System, Journal of The Korea Academia Industrial Cooperation Society, 13(9), 3895-3899. DOI: 10.5762/kais.2012.13.9.3895
  6. S. Chung, Y. Im, H. Kim, H. Jeong & D. A. Dornfeld. (2003). Evaluation of Micro-Replication Technology Using Silicone Rubber Molds and Its Applications, International Journal of Machine Tools and Manufacture, 43(13), 1337-1345. DOI: 10.1016/s0890-6955(03)00164-0
  7. N. M. Gomes, C. P. Fonte, C. C. Sousa, A. J. Mateus, P. J. Bartolo, M. M. Dias, J. C. Lopes & R. J. Santos. (2016). Real Time Control of Mixing in Reaction Injection Molding, Chemical Engineering Research and Design, 105, 31-43. DOI: 10.1016/j.cherd.2015.10.042
  8. D. J. Seo & J. R. Youn. (2005). Numerical Analysis on Reaction Injection Molding of Polyurethane Foam by Using a Finite Volume Method, Polymer, 46(17), 6482-6493. DOI: 10.1016/j.polymer.2005.03.126
  9. J. D. Jaung. (1998). Concrete Material Engineering, Seoul : Bosunggak.
  10. V. Bilek, V. Tamalova, P. Jajek & C. Fiala. (2014). Evolution from High Strenght Concrete to High Performance Concrete, Key Engineering Materials, 629-630, 49-54. DOI: 10.4028/www.scientific.net/kem.629-630.49
  11. M. Kojima. (2016). Ultra-High-Strength Concrete, Concrete Journal, 54(5), 554-558. DOI: 10.3151/coj.54.5_554
  12. S. W. Shin & B. Y. Noh. (1995). The Application and Optimum Mix Design for Ultra-High Strength Concrete above 700kg/cm2 , Magazine of the Korea Concrete Institute, 7(2), 60-67. https://doi.org/10.22636/MKCI.1995.7.2.60
  13. J. S. Park, Y. J. Kim, J. R. Cho & S. J. Jeon, (2013). Characteristics of Strength Development of Ultra-High Performance Concrete According to Curing Condition, Journal of the Korea Concrete Institute, 25(3), 295-304. DOI: 10.4334/jkci.2013.25.3.295
  14. D. I. Yang, M. H. Gong & S. J. Jung. (2006). An Experimental Study on the Field Application of 130MPa Ultra High Strength Concrete, Journal of the Architectural Institute of Korea Structure and Construction, 22(9), 107-114.
  15. H. S. Kim & J. W. Youn. (2009). A Study on Foaming Characteristics of Polyurethane Depeding on Environmental Temperature and Blowing Agent Content, Transaction of Materials Processing, 18(3), 256-261. DOI: 10.5228/kspp.2009.18.3.256
  16. M. M. A. Nikje & A. B. Garmarudi. (2011). Application of SiO2 Nanoparticles for Thermophysical Improvement of Integral Skin Polyurethane Elastomers, Advanced Composite Materials, 20(1), 79-89. DOI: 10.1163/092430410x504242