DOI QR코드

DOI QR Code

Antioxidant Activity and DNA Protective Effect against Oxidative Stress of Pinus rigida × taeda Cone

리기테다 소나무 솔방울의 항산화 활성 및 산화적 DNA 손상에 대한 억제 효과

  • Choi, Jisoo (Dept. of Pharmaceutical Science, Jungwon University) ;
  • Jang, Taewon (Dept. of Medicinal Plant Resources, Andong National University) ;
  • Min, Youngsil (Dept. of Pharmaceutical Science, JungWon University) ;
  • Lee, Manhyo (Hemp Promotion Project Team, Gyeongbuk Institute for Bio Industry) ;
  • Park, Jaeho (Dept. of Pharmaceutical Science & Institute of International Agricultural Research, JungWon Univ.)
  • 최지수 (중원대학교 제약공학과) ;
  • 장태원 (안동대학교 생약자원학과) ;
  • 민영실 (중원대학교 제약공학과) ;
  • 이만효 (경북바이오산업연구원) ;
  • 박재호 (중원대학교 제약공학과 및 중원대학교 국제유기농산업연구소)
  • Received : 2020.09.09
  • Accepted : 2020.11.20
  • Published : 2020.11.28

Abstract

Reactive oxygen species (ROS) damage DNA and cause cancer. Therefore, the research is being conducted on the development of antioxidants for the removal of ROS. This study was performed to investigate antioxidant activity and protective effect against oxidative DNA damage using ethyl acetate fractions from the cone of Pinus rigida × taeda (ERT). The antioxidant activity was evaluated using the DPPH, ABTS radical scavenging assay, reducing power assay, and Fe2+ chelating assay. Also, the contents of phenolic compounds and vitamin C related to antioxidant activity were analyzed to confirm phytochemicals. The DNA protective effect against oxidative stress was confirmed by the φX-174 RF I plasmid DNA cleavage assay. As a result, ERT showed DPPH and ABTS radical scavenging activities in a concentration-dependent manner. The results of reducing power and Fe2+ chelating activities were 77.32 ± 2.28% and 64.09 ± 1.01% at 200 ㎍/㎖. Also, ERT showed a DNA protective effect against oxidative stress.

활성산소종이 DNA를 손상하고 암을 유발하는데 기인하는 것으로 밝혀지면서 활성산소를 제거하기 위한 항산화 물질 개발 연구가 진행되고 있다. 본 연구에서는 리기테다 소나무 솔방울 에틸아세테이트 분획물의 항산화 효과 및 산화적 스트레스에 의해 야기된 DNA 손상 보호 효과를 조사하기 위해 수행되었다. 항산화 활성을 확인하기 위해 DPPH 및 ABTS 라디칼 소거 활성, 환원력, Fe2+ 킬레이팅 활성을 평가하였으며, 항산화 활성과 연관된 총 페놀 및 비타민 C의 함량도 분석하여 식물 화학물질을 확인하였다. 산화적 DNA 손상 억제 효과는 φX-174 RF I plasmid DNA 절단 분석법을 이용하여 측정하였다. DPPH 및 ABTS 라디칼 소거 활성은 농도 의존적으로 나타났다. 환원력과 Fe2+ 킬레이팅 활성은 200 ㎍/㎖에서 각각 77.32 ± 2.28%, 64.09 ± 1.01%의 활성을 나타냈다. 또한, 리기테다 소나무 솔방울은 산화적 스트레스에 대한 plasmid DNA 보호 효과를 보였다.

Keywords

References

  1. S. D. Aust, C. F. Chignell, T. M. Bray, B. Kalyanaraman & R. P. Mason. (1993). Free radicals in toxicology. Toxicology and applied pharmacology, 120(2), 168-178. DOI : 10.1006/taap.1993.1100
  2. S. J. Stohs. (1995). The role of free radicals in toxicity and disease. Journal of basic and clinical physiology and pharmacology, 6(3-4), 205-228. DOI : 10.1515/JBCPP.1995.6.3-4.205
  3. L. J. Marnett. (2000). Oxyradicals and DNA damage. Carcinogenesis, 21(3), 361-370. DOI : 10.1093/carcin/21.3.361
  4. S. R. Maxwell. (1995). Prospects for the use of antioxidant therapies. Drugs, 49(3), 345-361. DOI : 10.2165/00003495-199549030-00003
  5. A. N. T. Kong et al. (2001). Signal transduction events elicited by cancer prevention compounds. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 480, 231-241. DOI : 10.1016/S0027-5107(01)00182-8
  6. H. Wiseman & B. Halliwell. (1996). Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochemical Journal, 313(1), 17-29. DOI : 10.1042/bj3130017
  7. S. J. Jenog, J. H. Lee, H. N. Song, N. S. Seong, S. E. Lee & N. I. Baeg. (2004). Natural Products, Organic Chemistry ; Screening for Antioxidant Activity of Plant Medicinal Extracts. Journal of the Korean Society for Applied Biological Chemistry, 47(1), 135-140.
  8. H. O. Boo, S. J. Hwang, C. S. Bae, S. H. Park & W. S. Song. (2011). Antioxidant activity according to each kind of natural plant pigments. Korean Journal of Plant Resources, 24(1), 105-112. DOI : 10.7732/kjpr.2011.24.1.105
  9. B. C. Cha & E. H. Lee. (2007). Antioxidant activities of flavonoids from the leaves of Smilax china Linne. Korean Journal of Pharmacognosy, 38(1), 31-36.
  10. M. Asensi, A. Ortega, S. Mena, F. Feddi & J. M. Estrela. (2011). Natural polyphenols in cancer therapy. Critical reviews in clinical laboratory sciences, 48(5-6), 197-216. DOI : 10.3109/10408363.2011.631268
  11. Y. S. Lee, E. Y. Joo & N. W. Kim. (2006). Polyphenol contents and antioxidant activity of Lepista nuda. Journal of the Korean Society of Food Science and Nutrition, 35(10), 1309-1314. DOI : 10.3746/jkfn.2006.35.10.1309
  12. B. S. An et al. (2013). Anti-inflammatory effects of essential oils from Chamaecyparis obtusa via the cyclooxygenase-2 pathway in rats. Molecular medicine reports, 8(1), 255-259. DOI : 10.3892/mmr.2013.1459
  13. J. H. Kuk, S. J. Ma & K. H. Park. (1997). Isolation and characterization of benzoic acid with antimicrobial activity from needle of Pinus densiflora. Korean Journal of Food Science and Technology, 29(2), 204-210.
  14. A. Otto, B. R. Simoneit & V. Wilde. (2007). Terpenoids as chemosystematic markers in selected fossil and extant species of pine (Pinus, Pinaceae). Botanical Journal of the Linnean Society, 154(1), 129-140. DOI : 10.1111/j.1095-8339.2007.00638.x
  15. T. W. Jang, S. H. Nam & J. H. Park. (2016). Antioxidant activity and inhibitory effect on oxidative DNA damage of ethyl acetate fractions extracted from cone of red pine (Pinus densiflora). Korean Journal of Plant Resources, 29(2), 163-170. DOI : 10.7732/kjpr.2016.29.2.163
  16. K. H. Jeong et al. (2014). Anti-bacterial effects of aqueous extract purified from the immature cone of red pine (Pinus densiflora). Textile Coloration and Finishing, 26(1), 45-52. DOI : 10.5764/TCF.2014.26.1.45
  17. S. Kang et al. (2016). Phytoncide extracted from pinecone decreases LPS-induced inflammatory responses in bovine mammary epithelial cells. J Microbiol Biotechnol, 26(3), 579-87. DOI : 10.4014/jmb.1510.10070
  18. C. S. Ku, J. P. Jang & Mun, S. P. (2007). Exploitation of polyphenol-rich pine barks for potent antioxidant activity. Journal of Wood Science, 53(6), 524-528. DOI : 10.1007/s10086-007-0896-6
  19. V. Bondet, W. Brand-Williams & C. Berset. (1997). Kinetics and mechanisms of antioxidant activity using the DPPH free radical method. Lebensm.-Wiss. u.-Technol., 30, 609-615. https://doi.org/10.1006/fstl.1997.0240
  20. R. Van den Berg, G.R. Haenen, H. Van den Berg & A. Bast. (1999). Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chemistry, 66(4), 511-517. DOI : 10.1016/S0308-8146(99)00089-8
  21. M. Oyaizu. (1986). Studies on products of browning reaction. The Japanese journal of nutrition and dietetics, 44(6), 307-315. DOI : 10.5264/eiyogakuzashi.44.307
  22. B. Hus, I. M. Coupar & K. Ng. (2006). Antioxidant activity of hot water extract from the fruit of the Doum palm. Hyphaene thebaica. Food Chemistry, 98(2), 317-328. DOI : 10.1016/j.foodchem.2005.05.077
  23. AOAC. (1990). Official Methods of Analysis. 15th ed. Washington DC. Association of Official Analytical Chemists.
  24. S. K. Jagota & H. M. Dani. (1982). A new colorimetric technique for the estimation of vitamin C using Folin phenol reagent. Analytical biochemistry, 127(1), 178-182. DOI : 10.1016/0003-2697(82)90162-2
  25. H. E. Seifried, D. E. Anderson, E. I. Fisher & J. A. Milner. (2007). A review of the interaction among dietary antioxidants and reactive oxygen species. The Journal of nutritional biochemistry, 18(9), 567-579. DOI : 10.1016/j.jnutbio.2006.10.007
  26. K. S. Kasprzak. (1995). Possible role of oxidative damage in metal-induced carcinogenesis. Cancer investigation, 13(4), 411-430. DOI : 10.3109/07357909509031921
  27. M. Lu, B. Yuan, M. Zeng & J. Chen. (2011). Antioxidant capacity and major phenolic compounds of spices commonly consumed in China. Food Research International, 44(2), 530-536. DOI : 10.1016/j.foodres.2010.10.055
  28. K. Thaipong, U. Boonprakob, K. Crosby, L. Cisneros-Zevallos, & D. H. Byrne. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of food composition and analysis, 19(6-7), 669-675. DOI : 10.1016/j.jfca.2006.01.003
  29. M. Y. Lee, M. S. Yoo, Y. J. Whang, Y. J. Jin, M. H. Hong & Y. H. Pyo. (2012). Vitamin C, total polyphenol, flavonoid contents and antioxidant capacity of several fruit peels. Korean Journal of Food Science and Technology, 44(5), 540-544. DOI : 10.9721/KJFST.2012.44.5.540
  30. S. Meir, J. Kanner, B. Akiri & S. Philosoph-Hadas. (1995). Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. Journal of agricultural and food chemistry, 43(7), 1813-1819. DOI : 10.1021/jf00055a012
  31. S. Sakanaka, Y. Tachibana & Y. Okada. (2005). Preparation and antioxidant properties of extracts of Japanese persimmon leaf tea (kakinoha-cha). Food chemistry, 89(4), 569-575. DOI : 10.1016/j.foodchem.2004.03.013
  32. S. J. Stohs & D. Bagchi. (1995). Oxidative mechanism in the toxicity of metal ions. Free Radic. Biol. Med 18(2), 321-336. DOI : 10.1016/0891-5849(94)00159-H
  33. X. Huang, J. Dai, J. Fournier, A. M. Ali, Q. Zhang & K. Frenkel. (2002). Ferrous ion autoxidation and its chelation in iron-loaded human liver HepG2 cells. Free Radical Biology and Medicine, 32(1), 84-92. DOI : 10.1016/S0891-5849(01)00770-5
  34. T. Tanaka, N. Muto, Y. Ido, N. Itoh & K. Tanaka. (1997). Induction of embryonal carcinoma cell differentiation by deferoxamine, a potent therapeutic iron chelator. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1357(1), 91-97. DOI : 10.1016/S0167-4889(97)00016-5
  35. A. Ardestani & R. Yazdanparast. (2007). Antioxidant and free radical scavenging potential of Achillea santolina extracts. Food chemistry, 104(1), 21-29. DOI : 10.1016/j.foodchem.2006.10.066
  36. B. Halliwell, R. Aeschbach, J. Loliger, & O. I. Aruoma. (1995). The characterization of antioxidants. Food and Chemical Toxicology, 33(7), 601-617. DOI : 10.1016/0278-6915(95)00024-V
  37. C. Rice-Evans, N. Miller & G. Paganga. (1997). Antioxidant properties of phenolic compounds. Trends in plant science, 2(4), 152-159. DOI : 10.1016/S1360-1385(97)01018-2
  38. T. W. Jang, & J. H. Park. (2017). Antioxidative activities and whitening effects of ethyl acetate fractions from the immature seeds of Abeliophyllum distichum. Journal of Life Science, 27(5), 536-544. DOI : 10.5352/JLS.2017.27.5.536
  39. J. E. Klaunig et al. (1998). The role of oxidative stress in chemical carcinogenesis. Environmental health perspectives, 106(suppl 1), 289-295. DOI : 10.1289/ehp.98106s1289
  40. Y. J. Jung, & Y. J. Surh. (2001). Oxidative DNA damage and cytotoxicity induced by copper-stimulated redox cycling of salsolinol, a neurotoxic tetrahydroisoquinoline alkaloid. Free Radical Biology and Medicine, 30(12), 1407-1417. DOI : 10.1016/S0891-5849(01)00548-2
  41. E. Graf & J. W. Eaton. (1990). Antioxidant functions of phytic acid. Free Radical Biology and Medicine, 8(1), 61-69. DOI : 10.1016/0891-5849(90)90146-A