DOI QR코드

DOI QR Code

Effects of Metal-Organic Framework Membrane on Hydrogen Selectivity

  • Suh, Jun Min (Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University) ;
  • Cho, Sung Hwan (Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University) ;
  • Jang, Ho Won (Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University)
  • Received : 2020.11.25
  • Accepted : 2020.11.29
  • Published : 2020.11.30

Abstract

Hydrogen gas has attracted considerable attention as a promising candidate for future energy resources because of its eco-friendly characteristics; however, its highly combustible characteristics should be thoroughly examined to preclude potential disasters. In this regard, a highly sensitive method for the selective detection of H2 is extremely important. To achieve excellent H2 selectivity, the utilization of a metal-organic framework (MOF) membrane can physically screen interfering gas molecules by restricting the size of kinetic diameters that can penetrate its nanopores. This paper summarizes the various endeavors of researchers to utilize the MOF molecular sieving layer for the development of highly selective H2 sensors. Further, the review affords useful insights into the development of highly reliable H2 sensors.

Keywords

References

  1. T. Hubert, L. Boon-Brett, V. Palmisano, and M. A. Bader, "Development in gas sensor technology for hydrogen safety", Int. J. Hydrog. Energy, Vol. 39, pp. 20474-20483, 2014. https://doi.org/10.1016/j.ijhydene.2014.05.042
  2. A. Gurlo and D. R. Clarke, "High-Sensitivity Hydrogen Detection: Hydrogen-Induced Swelling of Multiple Cracked Palladium Films on Compliant Substrates", Angew. Chem. Int. Ed., Vol. 50, pp. 10130-10132, 2011. https://doi.org/10.1002/anie.201103845
  3. Y.-S. Shim, B. Jang, J. M. Suh, M. S. Noh, S. Kim, S. D. Han, Y. G. Song, D. H. Kim, C.-Y. Kang, H. W. Jang, and W. Lee, "Nanogap-controlled Pd coating for hydrogen sensitive switches and hydrogen sensors", Sens. Actuators B, Vol. 255, pp. 1841-1848, 2018. https://doi.org/10.1016/j.snb.2017.08.198
  4. J. Ma, Y. Zhou, X. Bai, K. Chen, and B.-O. Guan, "High-sensitivity and fast-response fiber-tip Fabry-Perot hydrogen sensor with suspended palladium-decorated graphene", Nanoscale, Vol. 11, pp. 15821-15827, 2019. https://doi.org/10.1039/C9NR04274A
  5. X. Tang, P.-A. Haddad, N. Mager, X. Geng, N. Reckinger, S. Hermans, M. Debliquy, and J.-P. Raskin, "Chemically deposited palladium nanoparticles on graphene for hydrogen sensor applications", Sci. Rep., Vol. 9, pp. 3653(1)-3653(12), 2019. https://doi.org/10.1038/s41598-019-40257-7
  6. S. S. Kalanur, I.-H. Yoo, and H. Seo, "Pd on MoO3 nanoplates as small-polaron-resonant eye-readable gasochromic and electrical hydrogen sensor", Sens. Actuators B, Vol. 247, pp. 357-365, 2017. https://doi.org/10.1016/j.snb.2017.03.033
  7. J. M. Suh, Y.-S. Shim, K. C. Kwon, J.-M. Jeon, T. H. Lee, M. Shokouhimehr, and H. W. Jang, "Pd- and Au-Decorated MoS2 Gas Sensors for Enhanced Selectivity", Electron. Mater. Lett., Vol 14, pp. 368-376, 2019.
  8. T. B. Flanagan and W. Oates, "The Palladium-Hydrogen System", Annu. Rev. Mater. Sci., Vol. 21, pp.269-304, 1991. https://doi.org/10.1146/annurev.ms.21.080191.001413
  9. X. Li, Y. Liu, J. C. Hemminger, and E. M. Penner, "Catalytically Activated Palladium@Platinum Nanowires for Accelerated Hydrogen Gas Detection", ACS Nano, Vol 9, No. 3, pp. 3215-3225, 2015. https://doi.org/10.1021/acsnano.5b00302
  10. M. G. Campbell, S. F. Liu, T. M. Swager, and M. Dinca, "Chemiresistive Sensor Arrays from Conductive 2D Metal-Organic Frameworks", J. Am. Chem. Soc., Vol. 137, No. 43, pp. 13780-13783, 2015. https://doi.org/10.1021/jacs.5b09600
  11. M. K. Smith and K. A. Mirica, "Self-Organized Frameworks on Textiles (SOFT): Conductive Fabrics for Simultaneous Sensing, Capture, and Filtration of Gases", J. Am. Chem. Soc., Vol. 139, No. 46, 16759-16767, 2017. https://doi.org/10.1021/jacs.7b08840
  12. M. Ko, A. Aykanat, M. K. Smith, and K. A. Mirica, "Drawing Sensors with Ball-Milled Blends of Metal-Organic Frameworks and Graphite", Sensors, Vol. 17, No. 10, p. 2192, 2017. https://doi.org/10.3390/s17102192
  13. E.-X. Chen, H. Yang, and J. Zhang, "Zeolitic Imidazolate Framework as Formaldehyde Gas Sensor", Inorg. Chem., Vol. 53, No. 11, pp. 5411-5413, 2014. https://doi.org/10.1021/ic500474j
  14. M. Drobek, J.-H. Kim, M. Bechelany, C. Vallicari, A. Julbe, and S. S. Kim, "MOF-Based Membrane Encapsulated ZnO Nanowires for Enhanced Gas Sensor Selectivity", ACS Appl. Mater. Interfaces, Vol. 8, No. 13, pp. 8323-8328, 2016. https://doi.org/10.1021/acsami.5b12062
  15. T. Zhou, Y. Sang, X. Wang, C. Wu, D. Zeng, and C. Xie, "Pore size dependent gas-sensing selectivity based on ZnO@ZIF nanorods arrays", Sens. Actuators B, Vol. 258, pp. 1099-1106, 2018. https://doi.org/10.1016/j.snb.2017.12.024
  16. M. Weber, J.-H. Kim, J.-H. Lee, J.-Y. Kim, I. Iatsunskyi, E. Coy, M. Drobek, A. Julbe, M. Bechelany, and S. S. Kim, "High-Performance Nanowire Hydrogen Sensors by Exploiting the Synergistic Effect of Pd Nanoparticles and Metal-Organic Franework Membranes", ACS Appl. Mater. Interfaces, Vol. 10, No. 40, pp. 34765-34773, 2018. https://doi.org/10.1021/acsami.8b12569
  17. W.-T. Koo, S. Qiao, A. F. Ogata, G. Jha, J.-S. Jang, V. T. Chen, I.-D. Kim, and R. M. Penner, "Accelerating Palladium Nanowire H2 Sensors Using Engineered Nanofiltration", ACS Nano, Vol. 11, No. 9, pp. 9276-9285, 2017. https://doi.org/10.1021/acsnano.7b04529
  18. P. A. Szilagyi, R. J. Westerwaal, R. Krol, H. Geerlings, and B. Dam, "Metal-organic framework thin films for protective coating of Pd-based optical hydrogen sensors", J. Mater. Chem. C, Vol. 1, pp. 8146-8155, 2013. https://doi.org/10.1039/c3tc31749h
  19. P. Gao, R. Liu, H. Huang, X. Jia, and H. Pan, "MOF-templated controllable synthesis of α-Fe2O3 porous nanorods and their gas sensing properties", RSC Adv., Vol. 6, pp. 94699(1)-94699(12), 2016.
  20. K. Rui, X. Wang, M. Du, Y. Zhang, Q. Wang, Z. Ma, Q. Zhang, D. Li, X. Huang, G. Sun, J. Zhu, and W. Huang, "Dual-Function Metal-Organic Framework-Based Wearable Fibers for Gas Probing and Energy Storage", ACS Appl. Mater. Interfaces, Vol. 10, No. 3, pp. 2837-2842, 2018. https://doi.org/10.1021/acsami.7b16761
  21. J.-S. Jang, W.-T. Koo, D.-H. Kim, and I.-D. Kim, "In Situ Coupling of Multidimensional MOFs for Heterogeneous Metal-Oxide Architectures: Toward Sensitive Chemiresistors", ACS Cent. Sci., Vol. 4, No. 7, pp. 929-937, 2018. https://doi.org/10.1021/acscentsci.8b00359
  22. Y.-M. Jo, T.-H. Kim, C.-S. Lee, K. Lim, C. W. Na, F. Abdel-Hady, A. A. Wazzan, and J.-H. Lee, "Metal-Organic Framework-Derived Hollow Hierarchical Co3O4 Nanocages with Tunable Size and Morphology: Ultrasensitive and Highly Selective Detection of Methylbenzenes", ACS Appl. Mater. Interfaces, Vol. 10, No. 10, pp. 8860-8868, 2018. https://doi.org/10.1021/acsami.8b00733
  23. W.-T. Koo, J.-S. Jang, and I.-D. Kim, "Metal-Organic Frameworks for Chemiresistive Sensors", Chem, Vol. 5, pp. 1938-1963, 2019. https://doi.org/10.1016/j.chempr.2019.04.013
  24. Y. Lu, W. Zhan, Y. He, Y. Wang, X. Kong, Q. Kuang, Z. Xie, and L. Zheng, "MOF-Templated Synthesis of Porous Co3O4 Concave Nanocubes with High Specific Surface Area and Their Gas Sensing Properties", ACS Appl. Mater. Interfaces, Vol. 6, No. 6, pp. 4186-4195, 2014. https://doi.org/10.1021/am405858v
  25. W.-T. Koo, J.-S. Jang, S.-J. Choi, H.-J. Cho, and I.-D. Kim, "Metal-Organic Framework Templated Catalysts: Dual Sensitization of PdO-ZnO Composite on Hollow SnO2 Nanotubes for Selective Acetone Sensors", ACS Appl. Mater. Interfaces, Vol. 9, No. 21, pp. 18069-18077, 2017. https://doi.org/10.1021/acsami.7b04657
  26. J.-L. Wang, Q.-G. Zhai, S.-N. Li, Y.-C. Jiang, and M.-C. Hu, "Mesoporous In2O3 materials prepared by solid-state thermolysis of indium-organic frameworks and their high HCHO-sensing performance", Inorg. Chem. Commun., Vol. 63, pp. 48-52, 2016. https://doi.org/10.1016/j.inoche.2015.11.015
  27. W. Li, X. Wu, N. Han, J. Chen, X. Qian, Y. Deng, W. Tang, and Y. Chen, "MOF-derived hierarchical hollow ZnO nanocages with enhanced low-concentration VOCs gas-sensing performance", Sens. Actuators B, Vol. 225, pp. 158-166, 2016. https://doi.org/10.1016/j.snb.2015.11.034
  28. H. Furukawa, K. E. Cordova, M. O'Keeffe, and O. M. Yaghi, "The Chemistry and Applications of Metal-Organic Frameworks", Science, Vol. 341, No. 6149, pp. 1230444(1)-1230444(12), 2013. https://doi.org/10.1126/science.1230444
  29. S.-J. Bao, R. Krishna, Y.-B. He, J.-S. Qin, Z.-M. Su, S.-L. Li, W. Xie, D.-Y. Du, W.-W. He, S.-R. Zhang, and Y.-Q. Lan, "A stable metal-organic framework with suitable pore sizes and rich uncoordinated nitrogen atoms on the internal surface of micropores for highly efficient CO2 capture", J. Mater. Chem. A, Vol. 3, pp. 7361(1)-7361(8). 2015. https://doi.org/10.1039/C5TA00256G
  30. J. M. Suh, Y.-S. Shim, D. H. Kim, W. Sohn, Y. Jung, S. Y. Lee, S. Choi, Y. H. Kim, J.-M. Jeon, K. Hong, K. C. Kwon, S. Y. Park, C. Kim, J.-H. Lee, C.-Y. Kang, H. W. Jang, "Synergetically Selective Toluene Sensing in Hematite?Decorated Nickel Oxide Nanocorals", Adv. Mater. Technol. Vol. 2, p. 1600259(1)-1600259(10), 2017. https://doi.org/10.1002/admt.201600259
  31. J. M. Suh, W. Sohn, Y.-S. Shim, J.-S. Choi, Y. G. Song, T. L. Kim, J.-M. Jeon, K. C. Kwon, K. S. Choi, C.-Y. Kang, H.-G. Byun, H. W. Jang, "p-p Heterojunction of Nickel Oxide-Decorated Cobalt Oxide Nanorods for Enhanced Sensitivity and Selectivity toward Volatile Organic Compounds", ACS Appl. Mater. Interfaces, Vol. 10, pp. 1050-1058, 2017.