DOI QR코드

DOI QR Code

상호작용 비선형성이 있는 다중 리더와 단일 추종자를 위한 일치 기반의 협력 제어

Consensus-based Cooperative Control for multiple leaders and single follower with interaction nonlinearities

  • Tack, Han-Ho (Department of Convergence Electronic Engineering, Gyeongsang National University) ;
  • Lim, Young-Hun (Department of Convergence Electronic Engineering, Gyeongsang National University)
  • 투고 : 2021.09.16
  • 심사 : 2021.09.28
  • 발행 : 2021.11.30

초록

본 논문에서는 상호작용을 갖는 다중 리더들과 단일 추종자를 위한 협력 제어 문제를 고려한다. 리더들은 제어 가능하고, 추종자는 모든 리더들과 상호작용을 갖고 상호작용에 의하여 제어된다. 따라서 리더들을 제어함으로써 일치를 달성하는 협력 제어문제를 연구한다. 리더들과 추종자는 각 일차 적분기와 이차 적분기로 모델링되고 상호작용에 비선형성이 존재한다고 가정한다. 리더들은 추종자 사이의 상호작용만을 측정할 수 있고 이웃한 리더들과 측정된 정보를 교환할 수 있다. 따라서 본 논문에서는 측정된 상호작용에 대한 정보와 속도 일치를 위한 가상의 속도 변수에 대한 정보교환을 이용하여 일치 기반의 협력 제어 알고리즘을 제안한다. 라살레 불변의 법칙을 기반으로 에이전트들의 공통 상태로의 수렴을 해석한다. 마지막으로 이론적 결과들을 검증하기 위하여 수치적 예제를 제공한다.

This paper considers the cooperative control problem for multiple leaders and a single follower with interactions. The leaders are controllable, and the follower has interactions with all leaders and is controlled by the interactions. Then, we study the cooperative control problem that achieves the consensus by controlling the leaders. The leaders and the follower are modeled by the single-integrator and the double-integrator, respectively, and it is assumed that the interactions have the nonlinearities. The leaders can estimate the interaction between the follower and exchange the estimated information with neighbors. Then, this paper proposes the consensus-based cooperative control algorithm using the information exchange of the estimated interactions and the virtual velocity variables to achieve the velocity consensus. We analyze the convergence of the agents to the common state based on the Lasalle's Invaraince Principle. Finally, we provide the numerical example to validate the theoretical results.

키워드

과제정보

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No.NRF-2019R1C1C1009879)

참고문헌

  1. Y. Cao, W. Ren, N. Sorensen, L. Ballard, A. Reiter, and J. Kennedy, "Experiments in consensus-based distributed cooperative control of multiple mobile robots," in Proceeding of the 2007 IEEE International Conference on Mechatronics and Automation, Harbin, China, pp. 2819-2824, Aug. 2007.
  2. Y. Kuriki and T. Namerikawa, "Consensus-based cooperative formation control with collision avoidance for a multi-uav system," in Proceeding of the 2014 American Control Conference, pp. 2077-2082, 2014.
  3. H. J. Lee, Y. H. Lim, and K. K. Oh, "Consensus based parallel operation of electric motors ensuring speed regulation and load torque sharing," International Journal of Control, Automation and Systems, vol. 19, pp. 3111-3121, Sept. 2021. https://doi.org/10.1007/s12555-020-0609-0
  4. Z. Wang and M. Schwawger, "Force-amplifying n-robot transport system (force-ants) for cooperative planar manipulation without communication," The International Journal of Robotics Research, vol. 35, no. 13, pp. 1564-1586, 2016. https://doi.org/10.1177/0278364916667473
  5. S. Thapa, H. Bai, and J. A. Acosta, "Cooperative aerial manipulation with decentralized adaptive force-consensus control," Journal of Intelligent & Robotic system, vol. 97, no. 1, pp. 171-183, 2020. https://doi.org/10.1007/s10846-019-01048-4
  6. J. C. Na, "Optimization in cooperative spectrum sensing," Asia-pacific Journal of Convergent Research Interchange, vol. 3, no. 1, pp. 17-27, 2017.
  7. Y. J. Choi, J. S. Seo, and J. P. Hong, "Deep reinforcement learning-based distributed routing algorithm for minimizing end-to-end delay in MANET," Journal of the Korea Institute of Information and Communication Engineering, vol. 25, no. 9, pp. 1267-1270, 2021. https://doi.org/10.6109/JKIICE.2021.25.9.1267
  8. R. Olfati-Saber, J. A. Fax, and R. M. Murray, "Consensus and cooperation in networked multi-agent systems," Proceedings of the IEEE, vol. 95, no. 1, pp. 215-233, Jan. 2007. https://doi.org/10.1109/JPROC.2006.887293
  9. X. He and Q. Wang "Distributed finite-time leaderless consensus control for double-integrator multi-agent systems with external disturbances," Applied Mathematics and Computation, vol. 295, no. 15, pp. 65-76, 2017. https://doi.org/10.1016/j.amc.2016.10.006
  10. Z. Li, Z. Duan, G. Chen, and L. Huang, "Consensus of multiagent systems and sychronization of complex networks: A unified viewpoint," IEEE Transactions on Circuits and Systems-I: Regular Papers, vol. 57, no. 1, pp. 213-224, 2010. https://doi.org/10.1109/TCSI.2009.2023937
  11. H. Du, G. Wen, D. Wu, Y. Cheng, and J. Lu, "Distributed fixed-time consensus for nonlinear heterogeneous multiagent systems," Automatica, vol. 113, pp. 108-797, 2020.
  12. W. Ni and D. Cheng, "Leader-following consensus of multi-agent systems under fixed and switching topologies," Systems & Control Letters, vol. 59, no. 3-4, pp. 209-217, 2010. https://doi.org/10.1016/j.sysconle.2010.01.006
  13. J. Jing and Y. Jiang, "Leader-following consensus of linear time-varying multi-agent systems under fixed and switching topologies," Automatica, vol. 113, pp. 108-804, 2020.
  14. X. Tan, J. Cao, and X. Li, "Consensus of leader-following multiagent systems: a distributed event-triggered impulsive control strategy," IEEE Transactions on Cybernetics, vol. 49, no. 3, pp. 792-801, 2018. https://doi.org/10.1109/tcyb.2017.2786474
  15. S. M. Kang, M. C. Park, B. H. Lee, K. K. Oh, and H. S. Ahn, "Distance-based formation control: background, principlal results and issues," Journal of Institute of Control, Robotics and Systems, vol. 19, no. 5, pp. 398-409, 2013. https://doi.org/10.5302/J.ICROS.2013.13.9003
  16. H. Bai and J. T. Wen, "Cooperative load transport: a formation-control perspective," IEEE Transactions on Robotics, vol. 26, no. 4, pp. 742-750, 2010. https://doi.org/10.1109/TRO.2010.2052169