DOI QR코드

DOI QR Code

라즈베리 파이를 이용한 생체신호 수집시스템 개발

Development of Acquisition System for Biological Signals using Raspberry Pi

  • Yoo, Seunghoon (Department of Computer Science, Republic of Korea Air Force Academy) ;
  • Kim, Sitae (Department of Mechanic Engineering, Republic of Korea Air Force Academy) ;
  • Kim, Dongsoo (Department of Physics and Chemistry, Republic of Korea Air Force Academy) ;
  • Lee, Younggun (Department of Electronics and Communication Engineering, Republic of Korea Air Force Academy)
  • 투고 : 2021.09.01
  • 심사 : 2021.10.05
  • 발행 : 2021.12.31

초록

최근 다양한 분야에 적용되고 있는 딥러닝을 활용한 알고리즘 개발을 위해서는 양질의 풍부한 학습데이터가 갖춰져야 한다. 본 논문은 딥러닝 알고리즘 개발 시 활용도가 높고 정보 도출 시 유용한 광학 영상, 열화상, 음성 등의 생체신호 데이터를 동시에 수집하여 서버에 전송하는 생체신호 수집시스템을 제안한다. 수집기의 이동성을 높이기 위해 라즈베리 파이를 기반으로 제작하였고, 수집한 데이터는 무선 인터넷을 통해 서버로 전송한다. 복수의 수집기에서 동시에 데이터 수집이 가능하도록 피실험자별로 로그인을 위한 아이디를 부여했고, 이를 데이터베이스에 반영하여 데이터 관리가 용이하게 하였다. 제안하는 수집시스템의 활용방안을 보이기 위해 피로도 측정을 위한 생체신호 데이터 수집의 예시를 보인다.

In order to develop an algorithm using deep learning, which has been recently applied to various fields, it is necessary to have rich, high-quality learning data. In this paper, we propose an acquisition system for biological signals that simultaneously collects bio-signal data such as optical videos, thermal videos, and voices, which are mainly used in developing deep learning algorithms and useful in derivation of information, and transmit them to the server. To increase the portability of the collector, it was made based on Raspberry Pi, and the collected data is transmitted to the server through the wireless Internet. To enable simultaneous data collection from multiple collectors, an ID for login was assigned to each subject, and this was reflected in the database to facilitate data management. By presenting an example of biological data collection for fatigue measurement, we prove the application of the proposed acquisition system.

키워드

과제정보

This work was supported by the Institute of Civil-Military Technology Cooperation(ICMTC) (No. 20-CM-BD-18).

참고문헌

  1. B. Jun, "Korean traditional music melody generator using artificial intelligence," Journal of the Korea Institute of Information and Communication Engineering, vol. 25, no. 7, pp. 869-876, Jul. 2021. https://doi.org/10.6109/JKIICE.2021.25.7.869
  2. C. O. Jung, I. Y. Yeo, and H. K. Jung, "Classification model of facial acne using deep learning," Journal of the Korea Institute of Information and Communication Engineering, vol. 23, no. 4, pp. 381-387, Apr. 2019. https://doi.org/10.6109/JKIICE.2019.23.4.381
  3. J. W. Bang and S. Y. Kim, "A convergent study on artificial intelligence painting as a playful art," the Korean Society of Science and Art, vol. 39, no. 3, pp. 187-199, Jun. 2021.
  4. S. E. Whang and J. G. Lee, "Data collection and quality challenges for deep learning," in Proceedings of the Very Large Data Base Endowment, vol. 13, no. 12, pp. 3429-3432, Aug. 2020.
  5. Y. S. Lee, J. Y. Lee, and K. T. Lee, "Amounts of responding times and unreliable responses at online surveys," Survey Research, vol. 9, no. 2, pp. 51-83, Jul. 2008.
  6. Raspberry Pi [Internet]. Available: https://www.raspberrypi.org/products/raspberry-pi-4-model-b/.
  7. FLIR [Internet]. Available: https://www.flirkorea.com/products/lepton/.
  8. D. M. Beazley, "SWIG: An easy to use tool for integrating scripting languages with C and C++," in Proceedings of the 4th USENIX Tcl/Tk workshop, Monterey, CA, pp. 129-139, 1996.
  9. picam. Audio/video recorder for Raspberry Pi with language agnostic API [Internet]. Available: https://github.com/iizukanao/picam.
  10. D. Kim, "Countermeasures for stress and fatigue in war field and its limitation," Journal of the Korea Institute of Military Science and Technology, vol. 13, no. 5, pp. 924-932, Oct. 2010.
  11. E. Smets, B, Garssen, B, Bonke, J, and D. Haes, "The multidimensional fatigue inventory (MFI) psychometric qualities of an instrument to assess fatigue," Journal of Psychosomatic Research, vol. 39, no. 5, pp. 315-325, Apr. 1995. https://doi.org/10.1016/0022-3999(94)00125-O