DOI QR코드

DOI QR Code

An Analysis of 'Related Learning Elements' Reflected in Textbooks

<인공지능 수학> 교과서의 '관련 학습 요소' 반영 내용 분석

  • 권오남 (서울대학교) ;
  • 이경원 (단국대학교사범대학부속중학교) ;
  • 오세준 (이화여자대학교사범대학부속이화.금란고등학교) ;
  • 박정숙 (양재고등학교)
  • Received : 2021.11.10
  • Accepted : 2021.12.22
  • Published : 2021.12.31

Abstract

The purpose of this study is to derive implications for the design of the next curriculum by analyzing the textbooks designed as a new subject in the 2015 revised curriculum. In the mathematics curriculum documents of , 'related learning elements' are presented instead of 'learning elements'. 'Related learning elements' are defined as mathematical concepts or principles that can be used in the context of artificial intelligence, but there are no specific restrictions on the amount and scope of dealing with 'related learning elements'. Accordingly, the aspects of 'related learning elements' reflected in the textbooks were analyzed focusing on the textbook format, the amount and scope of contents, and the ways of using technological tools. There were differences in the format of describing 'related learning elements' in the textbook by textbook and the amount and scope of handling mathematics concepts. Although similar technological tools were dealt with in each textbook so that 'related learning elements' could be used in the context of artificial intelligence, the focus was on computations and interpretation of results. In order to fully reflect the intention of the curriculum in textbooks, a systematic discussion on 'related learning elements' will be necessary. Additionally, in order for students to experience the use of mathematics in artificial intelligence, substantialized activities that can set and solve problems using technological tools should be included in textbooks.

이 연구는 2015 개정 교육과정에서 신설 과목으로 설계된 <인공지능 수학> 교과서를 분석하여 차기 교육과정 설계의 시사점을 도출하는 데 목적이 있다. <인공지능 수학> 시안을 담은 수학과 교육과정 문서에서는 '학습 요소' 대신에 '관련 학습 요소'를 제시하고 있다. '관련 학습 요소'는 인공지능의 맥락에서 활용될 수 있는 수학적 개념이나 원리로 정의하고 있는데 '관련 학습 요소'를 다루는 범위와 방법에 대해서는 구체적인 제한은 없다. 이에 '관련 학습 요소'가 <인공지능 수학> 교과서에서 반영된 양상을 형식, 범위와 방법, 공학적 도구 활용 방식을 중심으로 분석하였다. 교과서별로 '관련 학습 요소'를 교과서에 기술하는 형식상의 차이와 수학 개념을 취급하는 양과 범위에 차이가 있었다. 또한, '관련 학습 요소'를 하나의 수학 개념과 동일하게 정의하여 사용한 경우와 정의보다는 인공지능의 맥락에서 설명 위주로 서술하였다. '관련 학습 요소'를 인공지능의 맥락에서 활용할 수 있도록 교과서별로 유사한 공학적 도구를 다루었지만, 계산과 결과를 해석하는 활동 중심이었다. 고등학교 수학 과목으로서 <인공지능 수학>의 지향을 교과서에 충분히 반영하기 위해서 '관련 학습 요소'에 관한 체계적인 논의가 필요하다. 또한, 학생들이 인공지능 맥락의 활용 사례를 경험하기 위해서는 공학적 도구를 활용하여 문제를 설정하고 해결할 수 있는 내실화된 활동이 교과서에 구현되어야 할 것이다.

Keywords

References

  1. Ministry of Education. (2020a). The 3rd Comprehensive Plans for Mathematics Education. A press release (May 24. 2020).
  2. Ministry of Education. (2020b). Mathematics curriculum. Proclamation of the Ministry of Education #2020-236[Annex 8]. Sejong: Author.
  3. Ministry of Education. (2020c). Practical subjects(Technology & Home Economics)/Informatics curriculum curriculum. Proclamation of the Ministry of Education #2020-236[Annex 10]. Sejong: Author.
  4. Ministry of Education, & Korea Institute of Curriculum and Evaluation. (2015). Compilational notes and authorization criteria for the development of textbooks based on the 2015 revised curriculum. Sejong: Ministry of Education.
  5. Ministry of Education, & Korea Institute of Curriculum and Evaluation. (2020). Compilational notes and accreditation criteria for the development of textbooks based on the 2015 revised curriculum. Sejong: Ministry of Education.
  6. Noh, M., Jung, H., Yoon, J., Park, J., Kim, J., & Oh, T. (2004). A study on the concept of textbook and its internal s stem for effective teaching-learning in schools. Korea Textbook Research Foundation Research Report 2004-01. Seoul: Korea Textbook Research Foundation.
  7. Park, J. H., Park, M. S., & Kwon, O. N. (2018). An analysis of the introduction and application of definite integral in textbook developed under the 2015-Revised Curriculum. Journal of the Korean Society of Mathematics Education Series A: The Mathematical Education, 57(2), 157-177.
  8. Seong, D. H., Kim, S. H., Min, K. J., Yoo. S. M., Kim. J. B., Kim. J. S., & Woo. H. Y. (2021). . Seoul: Joongang.
  9. Shin, D. J., & Koh, S. S. (2019). A study on investigation about the meaning and the research trend of computational thinking(CT) in mathematics education. Journal of the Korean Society of Mathematics Education Series A: The Mathematical Education, 58(4), 483-505.
  10. Oh, H. P., Heo, S. Cho, S. H., Jeong, Y. M., & Kwon, S. S. (2021). . Seoul: Kumsung Publishing.
  11. Lee, S. G., Ko, H. K., Kim, Y. R., Park, J. S, ..., & Hong, O. S.,(2020). A development of a draft for the 2015 revised mathematics curriculum Artificial Intelligence Mathematics. KOFAC Research Report BD20100001.
  12. Lee, H. J., Lee, J. H., Lee, K. J., Kim, T. J., & Park. J. H. (2021). . Seoul: Cmass.
  13. Chang, K. (2017). A feasibility study on integrating computational thinking into school mathematics. Journal of Korea Society Educational Studies in Mathematics , 19(3), 553-570.
  14. Choi, E., & Kwon, O. N. (2020). Comparison of Trigonometry in Mathematics Textbooks in Korea, Australia, and Finland. Journal of the Korean Society of Mathematics Education Series E: Communications of Mathematical Education, 34(3), 393-419.
  15. Huh, K., Lee, J., Hyun, Y., Jung, M., Kang, W., & Jo, S. (2005). A study for the on-demand improvement on a textbook's external format according to changes in curriculum. Korea Textbook Research Foundation Research Report 2005-03. Seoul: Korea Textbook Research Foundation.
  16. Hong, J. G., Park, J. S., Seol. J. S., Oh, S. J., Park, M. G., & Park, S. H. (2021). . Seoul: Chunjae Textbook.
  17. Hwang, S. U., Kwon, S. H., Jeong, D. S., Park, S, U., & Hong, C. S. (2021). . Seoul: Mirea-N.
  18. Abramovich, S. (2015). Mathematical problem posing as a link between algorithmic thinking and conceptual knowledge. Teach Math, 18(2), 45-60.
  19. Binkley, M., Erstad, O., Herman, J., Raizen, S., Ripley, M., Miller-Ricci, M., & Rumble, M. (2012). Defining twenty-first century skills. In P. Griffin, B. McGaw, & E. Care (Eds.), Assessment and teaching of 21st century skills (pp. 17-66). Netherlands: Springer.
  20. Bowen, G. A. (2009). Document Analysis as a Qualitative Research Method. Qualitative Research Journal, 9(2), 27-40. https://doi.org/10.3316/QRJ0902027
  21. Drijvers, P., Kodde-Buitenhuis, H., & Doorman, M. (2019). Assessing mathematical thinking as part of curriculum reform in the Netherlands. Educational studies in mathematics, 102(3), 435-456. https://doi.org/10.1007/s10649-019-09905-7
  22. Freeman, D. J., & Porter, A. C. (1989). Do textbooks dictate the content of mathematics instruction in elementary schools? American Educational Research Journal, 26(3), 403-421. https://doi.org/10.3102/00028312026003403
  23. Hoim, T., Hommik, C., & Kikas, u. (2016). Changing mathematics education in Estonia. Computer-based statistics project. [Working paper submitted for CIDREE-STEM 2016, December 22nd].
  24. ISTE, & CSTA. (2011). Computational thinking in K-12 education leadership toolkit.
  25. Kadijevich, D. M. (2018) A cycle of computational thinking. In Trebinjac B, Jovanovic S (Eds), Proceedings of the 9th international conference on e-learning. Met-ropolitan University, Belgrade (pp. 75-77). https://econference.metropolitan.ac.rs/wp-content/uploads/2019/05/e-learning-2018-final.pdf
  26. Kafai, Y., & Burke, Q. (2013). Computer programming goes back to school. Phi Delta Kappan, 95(1), 61-65. https://doi.org/10.1177/003172171309500111
  27. Kallia, M., van Borkolo, S., Drijvers, P., Barendsen, E., & Tolboom, J. (2021). Characterising computational thinking in mathematics education: a literature-informed Delphi study, Research in Mathematics Education, 23, 159-187. https://doi.org/10.1080/14794802.2020.1852104
  28. Li, Y. (2000). A comparison of problems that follow selected content presentations in American and Chinese mathematics textbooks. Journal for Research in Mathematics Education, 31(2), 234-241. https://doi.org/10.2307/749754
  29. Lockwood, E., DeJarnette, A., Asay, A., & Thomas, M. (2016). Algorithmic thinking: an initial characterization of computational thinking in mathematics. In Wood MB, Turner EE, Civil M, Eli JA (Eds.), Proceedings of the 38th Annual Meeting of the North American chapter of the International Group for the Psychology of Mathematics Education. The University of Arizona, Tucson, (pp 1588-1595).
  30. OECD. (2018). The Future of Education and Skills. Retrieved from https://www.oecd.org/education/2030/E2030%20Position%20Paper%20(05.04.2018).pdf
  31. Papert, S. (1980). Mindstorms: children, computers, and powerful ideas. Basic Books: New York
  32. Scantamburlo, T. (2013). Philosophical aspects in pattern recognition research. A PhD dissertation, Department of informatics, Ca, Foscari University of Venice, Venice.
  33. Schmidt, H. (2012). Measuring content through textbooks: The cumulative effect of middle-school tracking. In G. Gueudet, B. Pepin, & L. Trouche (Eds.). From text to 'lived' resources. Mathematics Teacher Education. Dordrecht: Springer.
  34. Seland, A. (2021). Assessment in upper secondary mathematics education in Norway. In Proceedings of SNU Mathematics Education Webinar Series: Mathematics Education in the Era of COVID-19 (pp. 70-73).
  35. Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating computational thinking with K-12 science education using agent-based computation: A theoretical framework. Education and Information Technologies, 18(2), 351-380. https://doi.org/10.1007/s10639-012-9240-x
  36. Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142-158. https://doi.org/10.1016/j.edurev.2017.09.003
  37. Stein, M., Remillard, J., & Smith, M. (2007). How curriculum influences student learning. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 319-370). Greenwich, Conn: Information Age Publishing.
  38. Wijaya, A., van den Heuvel-Panhuizen, M., & Doorman, M. (2015). Opportunity-to-learn context-based tasks provided by mathematics textbooks. Educational studies in Mathematics, 89(1), 41-65. https://doi.org/10.1007/s10649-015-9595-1
  39. Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. https://doi.org/10.1145/1118178.1118215
  40. Wing, J. M. (2017). Computational thinking's influence on research and education for all. Italian Journal of Educational Technology, 25(2), 7-14.
  41. Wolfram, C. (2020). The Math(s) Fix: An Education Blueprint for the AI Age-Wolfram Media. Wolfram Media, Inc.