DOI QR코드

DOI QR Code

3D 프린팅 기술 접목 항공부품의 인증 제안

Certification Proposal for 3D Printing Technology Integrated Aviation Parts

  • 박태진 (경남대학교 기계융합공학과) ;
  • 최정호 (경남대학교 기계공학부)
  • Park, Tae-Jin (School of Mechanical Engineering, Kyungnam University) ;
  • Choi, Jeong-Ho (School of Mechanical Engineering, Kyungnam University)
  • 투고 : 2021.08.14
  • 심사 : 2021.12.20
  • 발행 : 2021.12.28

초록

본 연구는 3D 프린팅을 통해 제작된 항공부품 인증에 관한 제안을 하고자 한다. 현재 다양한 산업군에서 여러 방식의 3D 프린터가 활용되고 있다. 그 중 항공분야에서도 무인기나 항공부품 제작을 위하여 많은 연구가 이루어지고 있다. 그러나, 현재의 3D 프린터 기술 수준 및 이를 활용한 항공부품 적용 등에는 많은 문제점들 및 관련 감항 인증 기준이 미흡한 상태이다. 또한, 적합성과 합치성에 대한 명확한 인증 기준은 제시된 것이 드물다. 따라서, 항공부품으로 적용하기 위한 3D 프린팅 장비의 인증 관련 사항들을 제안하고자 한다. 앞으로 3D 프린팅 장비의 정밀도 향상 및 불량률 저하, 축 처짐 문제, 베드 레벨링 문제 등이 해결될 것으로 기대되고, 이에 대한 인증기준이 명확하게 정립되기를 바란다. 그리고, 3D 프린팅 기술을 적용한 항공부품의 신뢰성이 향상되기를 바라고, 관련 인증 기준들이 더욱 발전되기를 바란다.

This study would like to propose a certification of aviation components manufactured through 3D printing. Currently, many types of 3D printers are being used in various industries. Among them, a lot of research is being done in the aviation sector to manufacture drones and aviation components. However, the current level of 3D printer technology and the application of aviation components using it are lacking in many problems and related airworthiness certification standards. Furthermore, clear certification criteria for conformity and coherence are rarely presented. Therefore, we would like to propose matters related to certification of 3D printed equipment for application as aviation components. It is expected that 3D printing equipment will improve precision, reduce defect rate, sagging problem, and bed leveling problem will be solved in the future, and certification standards will be clearly established. In addition, we hope that the reliability of aviation components applied with 3D printing technology will be improved and the relevant certification standards will be further developed.

키워드

참고문헌

  1. Y. I. Jang. (2017). GE's Aviation Component Made by 3D printer, Electronic newspaper, https://eiec.kdi.re.kr/publish/naraView.do?cidx=10940
  2. D. J. Lee. (2020). Healthcare 3D Printing Technology Trends, BRIC VIEW 2020-T38. https://www.ibric.org/myboard/read.php?Board=report&id=3624
  3. I. B. Seung, H. S. Baek & J. H. Park. (2018). Overseas Case Study of 3D Printing Technology for Construction and Commercialization Plan in Korea, The Korean Society of Industry Convergence 21(6), 279-284. DOI : 10.21289/KSIC.2018.21.6.273
  4. J. H. Choi & Y.M. Choi. (2020). Prerequisites for Realizing Urban Air Traffic (UAM) and Personal Air Vehicle (PAV). Journal of the Korea Convergence Society, 11(12), 147-153. DOI : 10.15207/JKCS.2020.11.12.147
  5. C. H. Choi. (2021). Personal Air Vehicle(PAV), KISTEP Technology trend brief, Korea Institute of S&T Evaluation and Planning 2021-05.
  6. E. H.Lim, H. Y. Hwang, J. Y. Cha, S .B. Kim & B. W. Park. (2017). The Overseas Research Trends for the On Demand Mobility and Domestic Application Plan Using PAV, Journal of advanced navigation technology, 21(4), 313 -324 DOI : 10.12673/jant.2017.21.4.313
  7. K. R. Oh. (2019). Trends in Development of UTM Service Provision and Airspace Integration Technology, Aerospace Industrial Technology Trends, 17(2), 39-44. http://library.kari.re.kr
  8. W. K. Jeon, T. J. Park, B. C. Kim, W. S. Lee & S. J. Park. (2017). Development of intelligent 3D Printer, The 7th International Conference of Asian Society for Precision Engineering and Nanotechnology, Seoul, Korea, November 14-17.
  9. Comparison of Airworthiness Certification System between Korea and U.S. (2008). Journal of the Korean Society for Aeronautical & Space Sciences, 36(3), 298-305. DOI : 10.5139/jksas.2008.36.3.298
  10. K. Y. Lee, B. J. Yi, H. G. Chung & C. K. Ryoo. (2014). A Study on Certification Procedures for Aircraft Parts Manufacturer Approval, Journal of The Korean Society for Aeronautical and Space Sciences, 42(12), 1073-1079. DOI : 10.5139/JKSAS.2014.42.12.1073
  11. European Aviation Safety Agency. (2010). CS-E : Certification Specification for Engine, Amendment 3, Hoofddrop, Netherlands.
  12. Joint Aviation Authorities. (1994). JAR-E: Joint Aviation Requirements Engines, Hoofddrop, Netherlands.
  13. J. H. Kim, Y. W. Jung, G. C. Moon, S. Y. Park & M. H. Kim. (2017). Comparative Study of Engine Type Certificate Criteria, Proc. of KSPE Spring Conference, Jeju, Korea.
  14. J. G. Kim, S. S. Yoon, K. M. Ko & S. Y. Park. (2017). Evaluation of Time Between Overhaul in Civil Helicopter Engine Co-developed with Light Armed Helicopter, Proc. of KSPE Fall Conference, Pusan, Korea.
  15. K. M. Ko, M. H. Kim, S. S. Yoon, S. Y. Park & S.C. Kang. (2017). A Study on Selection of Turbo-shaft Engine Rating Structure for Rotorcraft, Proc. of KSAS Fall Conference, Jeju, Korea.
  16. Aircraft Certification. (2020). Korea Institute of Aviation Safety Technology(KIAST). https://www.kiast.or.kr/
  17. G. H. Khim, T. H. Keem, H. Lee & S. W. Kim. (2005). Compensation of the straightness Measurement Error in the Laser Interferometer, Journal of the Korean Society of Precision Engineering, 22(9), 69-76.
  18. B. K. Kim, J. Y. Choi, H. J. Kang, Y. S. Ro. (2004). Development of Automatic Hole Position Measurement System using the CCD-camera, Journal of the Korean Society of Precision Engineering, 22(9), 16-19.