DOI QR코드

DOI QR Code

Nonlinear thermal vibration of pre/post-buckled two-dimensional FGM tapered microbeams based on a higher order shear deformation theory

  • Hendi, Asmaa A. (Department of Physics, Faculty of Science, AL Faisaliah Campus, King Abdulaziz University) ;
  • Eltaher, Mohamed A. (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University (KAU)) ;
  • Mohamed, Salwa A. (Engineering Mathematics Department, Faculty of Engineering, Zagazig University) ;
  • Attia, Mohamed A. (Department of Mechanical Design and Production Engineering, Faculty of Engineering, Zagazig University) ;
  • Abdalla, A.W. (Department of Mechanical Design and Production Engineering, Faculty of Engineering, Zagazig University)
  • 투고 : 2020.08.19
  • 심사 : 2021.10.24
  • 발행 : 2021.12.25

초록

The size-dependent nonlinear thermomechanical vibration analysis of pre- and post-buckled tapered two-directional functionally graded (2D-FG) microbeams is presented in this study. In the context of the modified couple stress theory, the formulations are derived based on the parabolic shear deformation beam theory and von Karman nonlinear strains. Different thermomechanical material properties are assumed to be temperature-dependent and smoothly vary in both length and thickness directions using the power law and the physical neutral axis concept is employed. The nonlinear governing equations are derived using the Hamilton principle and the resulting variable coefficient equations of motion are solved using the differential quadrature method (DQM) and iterative Newton's method for clamped-clamped and simply supported boundary conditions. Comparison studies are presented to validate the derived model and solution procedure. The impacts of induced thermal moments, temperature power index, two gradient indices, nonuniform cross-section, and microstructure length scale parameter on the frequency-temperature configurations are explored for both clamped and simply supported microbeams.

키워드

과제정보

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. (D-122-363-1440). The authors, therefore, gratefully acknowledge DSR technical and financial support.

참고문헌

  1. Ahouel, M., Houari, M.S.A., Bedia, E. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963.
  2. Akbas, S.D., Bashiri, A.H., Assie, A.E. and Eltaher, M.A. (2020a), "Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support", J. Vib. Control, 1077546320947302. https://doi.org/10.1177/1077546320947302.
  3. Akbas, S.D., Fageehi, Y.A., Assie, A.E. and Eltaher, M.A. (2020b), "Dynamic analysis of viscoelastic functionally graded porous thick beams under pulse load", Eng. Comput., https://doi.org/10.1007/s00366-020-01070-3.
  4. Akgoz, B. and Civalek, O . (2017), "Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams", Compos. Part B: Eng., 129 77-87. https://doi.org/10.1016/j.compositesb.2017.07.024.
  5. Anandrao, K.S., Gupta, R., Ramchandran, P. and Rao, G.V. (2010), "Thermal post-buckling analysis of uniform slender functionally graded material beams", Struct. Eng. Mech., 36(5), 545-560. https://doi.org/10.12989/sem.2010.36.5.545.
  6. Asiri, S.A., Akbas, S.D and Eltaher, M.A. (2020), "Dynamic analysis of layered functionally graded viscoelastic deep beams with different boundary conditions due to a pulse load", Int. J. Appl. Mech., https://doi.org/10.1142/S1758825120500556
  7. Attia, M.A. and Mahmoud, F.F. (2017), "Analysis of viscoelastic Bernoulli-Euler nanobeams incorporating nonlocal and microstructure effects.", Int. J. Mech. Mater. Des., 13(3), 385-406. https://doi.org/10.1007/s10999-016-9343-4.
  8. Attia, M.A. and Mahmoud, F.F. (2016), "Modeling and analysis of nanobeams based on nonlocal-couple stress elasticity and surface energy theories", Int. J. Mech. Sci., 105,126-134. https://doi.org/10.1016/j.ijmecsci.2015.11.002.
  9. Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Sci., 115, 73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011.
  10. Attia, M.A. and El-Shafei, A.G. (2020), "Investigation of multibody receding frictional indentation problems of unbonded elastic functionally graded layers", Int. J. Mech. Sci., 184, 105838. https://doi.org/10.1016/j.ijmecsci.2020.105838.
  11. Attia, M.A. and Emam, S.A. (2018), "Electrostatic nonlinear bending, buckling and free vibrations of viscoelastic microbeams based on the modified couple stress theory", Acta Mechanica, 229(8), 3235-3255. https://doi.org/10.1007/s00707-018-2162-y.
  12. Attia, M.A. and Mahmoud, F.F. (2015), "Analysis of nanoindentation of functionally graded layered bodies with surface elasticity", Int. J. Mech. Sci., 94, 36-48. https://doi.org/10.1016/j.ijmecsci.2015.02.016.
  13. Attia, M.A. and Mohamed, S.A. (2018), "Pull-in instability of functionally graded cantilever nanoactuators incorporating effects of microstructure, surface energy and intermolecular forces", Int. J. Appl. Mech., 10(08), 1850091. https://doi.org/10.1142/S1758825118500916.
  14. Attia, M.A. and Mohamed, S.A. (2019), "Coupling effect of surface energy and dispersion forces on nonlinear size-dependent pull-in instability of functionally graded micro-/nanoswitches", Acta Mechanica. 230(3), 1181-1216. https://doi.org/10.1007/s00707-018-2345-6.
  15. Attia, M.A. and Mohamed, S.A. (2020), "Nonlinear thermal buckling and postbuckling analysis of bidirectional functionally graded tapered microbeams based on Reddy beam theory", Eng. Comput., 1-30. https://doi.org/10.1007/s00366-020-01080-1.
  16. Attia, M.A. and Rahman, A.A.A. (2018), "On vibrations of functionally graded viscoelastic nanobeams with surface effects", Int. J. Eng. Sci., 127, 1-32. https://doi.org/10.1016/j.ijengsci.2018.02.005.
  17. Attia, M.A., Shanab, R.A., Mohamed, S.A. and Mohamed, N.A. (2019), "Surface energy effects on the nonlinear free vibration of functionally graded timoshenko nanobeams based on modified couple Stress theory", Int. J. Struct. Stab. Dyn., 19(11), 1950127. https://doi.org/10.1142/S021945541950127X.
  18. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  19. Awrejcewicz, J., Krysko, V., Pavlov, S., Zhigalov, M., Kalutsky, L. and Krysko, A. (2020), "Thermoelastic vibrations of a Timoshenko microbeam based on the modified couple stress theory", Nonlinear Dyn., 99(2), 919-943. https://doi.org/10.1007/s11071-019-04976-w.
  20. Barati, A., Hadi, A., Nejad, M.Z. and Noroozi, R. (2020), "On vibration of bi-directional functionally graded nanobeams under magnetic field", Mech. Based Des. Struct. Machines. 1-18. https://doi.org/10.1080/15397734.2020.1719507.
  21. Bennai, R., Atmane, H.A. and Tounsi, A. (2015), "A new higher-order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521.
  22. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409.
  23. Bouremana, M., Houari, M.S.A., Tounsi, A., Kaci, A. and Bedia, E.A.A. (2013), "A new first shear deformation beam theory based on neutral surface position for functionally graded beams", Steel Compos. Struct., 15(5), 467-479. https://doi.org/10.12989/scs.2013.15.5.467.
  24. Challamel, N. and Wang, C. (2008), "The small length scale effect for a non-local cantilever beam: a paradox solved", Nanotechnology. 19(34), 345703. https://doi.org/10.1088/0957-4484/19/34/345703.
  25. Chandel, V.S., Wang, G. and Talha, M. (2020), "Advances in modelling and analysis of nano structures: a review", Nanotechnol. Rev., 9(1), 230-258. https://doi.org/10.1515/ntrev-2020-0020.
  26. Chen, X., Lu, Y. and Li, Y. (2019a), "Free vibration, buckling and dynamic stability of bi-directional FG microbeam with a variable length scale parameter embedded in elastic medium", Appl. Mathem. Modelling. 67, 430-448. https://doi.org/10.1016/j.apm.2018.11.004
  27. Chen, X., Zhang, X., Lu, Y. and Li, Y. (2019b), "Static and dynamic analysis of the postbuckling of bi-directional functionally graded material microbeams", International Journal of Mechanical Sciences. 151, 424-443. https://doi.org/10.1016/j.ijmecsci.2018.12.001
  28. Dehrouyeh-Semnani, A.M. (2017), "On boundary conditions for thermally loaded FG beams", Int. J. Eng. Sci., 119, 109-127. https://doi.org/10.1016/j.ijengsci.2017.06.017.
  29. Dehrouyeh-Semnani, A.M. and Nikkhah-Bahrami, M. (2015), "A discussion on incorporating the Poisson effect in microbeam models based on modified couple stress theory", Int. J. Eng. Sci., 86, 20-25. https://doi.org/10.1016/j.ijengsci.2014.10.003.
  30. Dehrouyeh-Semnani, A.M., Mostafaei, H., Dehrouyeh, M. and Nikkhah-Bahrami, M. (2017), "Thermal pre-and post-snap-through buckling of a geometrically imperfect doubly-clamped microbeam made of temperature-dependent functionally graded materials", Compos. Struct., 170, 122-134. https://doi.org/10.1016/j.compstruct.2017.03.003.
  31. Ebrahimi, F. and Barati, M.R. (2017), "Vibration analysis of viscoelastic inhomogeneous nanobeams resting on a viscoelastic foundation based on nonlocal strain gradient theory incorporating surface and thermal effects", Acta Mechanica. 228(3), 1197-1210. https://doi.org/10.1007/s00707-016-1755-6.
  32. Ebrahimi, F. and Farazmandnia, N. (2018), "Thermal buckling analysis of functionally graded carbon nanotube-reinforced composite sandwich beams", Steel Compos. Struct., 27(2), 149-159. https://doi.org/10.12989/scs.2018.27.2.149.
  33. Ebrahimi, F. and Salari, E. (2015), "Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments", Compos. Struct., 128, 363-380. https://doi.org/10.1016/j.compstruct.2015.03.023.
  34. Ebrahimi-Nejad, S., Shaghaghi, G.R., Miraskari, F. and Kheybari, M. (2019), "Size-dependent vibration in two-directional functionally graded porous nanobeams under hygro-thermomechanical loading", European Phys. J. Plus. 134(9), 465. https://doi.org/10.1140/epjp/i2019-12795-6.
  35. Eltaher, M.A., Attia, M.A., Soliman, A.E. and Alshorbagy, A.E. (2018), "Analysis of crack occurs under unsteady pressure and temperature in a natural gas facility by applying FGM", Struct. Eng. Mech., 66(1), 97-111. https://doi.org/10.12989/sem.2018.66.1.097.
  36. Eltaher, M.A. and Akbas, S.D. (2020), "Transient response of 2D functionally graded beam structure", Struct. Eng. Mech., 75(3), 357-367. https://doi.org/10.12989/sem.2020.75.3.357.
  37. Eltaher, M.A. and Mohamed, S.A. (2020a), "Buckling and stability analysis of sandwich beams subjected to varying axial loads", Steel Compos. Struct., 34(2), 241-260. https://doi.org/10.12989/scs.2020.34.2.241.
  38. Eltaher, M.A. and Mohamed, N. (2020b), "Nonlinear stability and vibration of imperfect CNTs by Doublet mechanics", Appl. Mathem. Comput., 382, 125311. https://doi.org/10.1016/j.amc.2020.125311.
  39. Eltaher, M.A., Attia, M.A. and Wagih, A. (2020a), "Predictive model for indentation of elasto-plastic functionally graded composites", Compos. Part B: Eng., 108129. https://doi.org/10.1016/j.compositesb.2020.108129.
  40. Eltaher, M.A., Mohamed, N. and Mohamed, S.A. (2020b), "Nonlinear buckling and free vibration of curved CNTs by doublet mechanics", Smart Struct. Syst, 26(2), 213226. http://dx.doi.org/10.12989/sss.2020.26.2.213.
  41. Galeban, M., Mojahedin, A., Taghavi, Y. and Jabbari, M. (2016), "Free vibration of functionally graded thin beams made of saturated porous materials", Steel Compos. Struct., 21(5), 999-1016. https://doi.org/10.12989/scs.2016.21.5.999.
  42. Gao, Y., Xiao, W.S. and Zhu, H. (2019), "Nonlinear thermal buckling of bi-directional functionally graded nanobeams", Struct. Eng. Mech., 71(6), 669-682. https://doi.org/10.12989/sem.2019.71.6.669.
  43. Ghatage, P.S., Kar, V.R. and Sudhagar, P.E. (2020), "On the numerical modelling and analysis of multi-directional functionally graded composite structures: A review", Compos. Struct., 236, 111837. https://doi.org/10.1016/j.compstruct.2019.111837.
  44. Ghayesh, M.H. and Farajpour, A. (2019), "A review on the mechanics of functionally graded nanoscale and microscale structures", Int. J. Eng. Sci., 137, 8-36. https://doi.org/10.1016/j.ijengsci.2018.12.001
  45. Hamed, M.A., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads", Steel Compos. Struct., 34(1), 75-89. https://doi.org/10.12989/scs.2020.34.1.075.
  46. Huang, Y. and Ouyang, Z.Y. (2020), "Exact solution for bending analysis of two-directional functionally graded Timoshenko beams" Archive Appl. Mech., 1-19. https://doi.org/10.1007/s00419-019-01655-5.
  47. Karamanli, A. (2018), "Free vibration analysis of two directional functionally graded beams using a third order shear deformation theory", Compos. Struct., 189, 127-136. https://doi.org/10.1016/j.compstruct.2018.01.060.
  48. Karamanli, A. and Vo, T.P. (2018), "Size dependent bending analysis of two directional functionally graded microbeams via a quasi-3D theory and finite element method", Compos. Part B: Eng., 144, 171-183. https://doi.org/10.1016/j.compositesb.2018.02.030.
  49. Karami, B., Janghorban, M. and Rabczuk, T. (2020), "Dynamics of two-dimensional functionally graded tapered Timoshenko nanobeam in thermal environment using nonlocal strain gradient theory", Compos. Part B: Eng., 182, 107622. https://doi.org/10.1016/j.compositesb.2019.107622.
  50. Khaniki, H.B. and Rajasekaran, S. (2018), "Mechanical analysis of non-uniform bi-directional functionally graded intelligent micro-beams using modified couple stress theory", Mater. Res. Express. 5(5), 055703. https://doi.org/10.1088/2053-1591/aabe62.
  51. Kocaturk, T. and Akbas, S.D. (2012), "Post-buckling analysis of Timoshenko beams made of functionally graded material under thermal loading", Struct. Eng. Mech., 41(6), 775-789. https://doi.org/10.12989/sem.2012.41.6.775.
  52. Kocaturk, T. and Akbas, S.D. (2013), "Thermal post-buckling analysis of functionally graded beams with temperature-dependent physical properties", Steel Compos. Struct., 15(5), 481-505. https://doi.org/10.12989/scs.2013.15.5.481.
  53. Komijani, M., Esfahani, S., Reddy, J., Liu, Y. and Eslami, M. (2014), "Nonlinear thermal stability and vibration of pre/post-buckled temperature-and microstructure-dependent functionally graded beams resting on elastic foundation", Compos. Struct., 112, 292-307. https://doi.org/10.1016/j.compstruct.2014.01.041.
  54. Lal, R. and Dangi, C. (2019), "Thermomechanical vibration of bidirectional functionally graded non-uniform timoshenko nanobeam using nonlocal elasticity theory", Compos. Part B: Eng., 172, 724-742. https://doi.org/10.1016/j.compositesb.2019.05.076.
  55. Lal, R. and Dangi, C. (2020), "Effect of in-plane load and thermal environment on buckling and vibration behavior of two-dimensional functionally graded tapered Timoshenko nanobeam", J. Vib. Acous., 1-27. https://doi.org/10.1115/1.4047862.
  56. Lei, J., He, Y., Guo, S., Li, Z. and Liu, D. (2017), "Thermal buckling and vibration of functionally graded sinusoidal microbeams incorporating nonlinear temperature distribution using DQM", J. Thermal Stresses. 40(6), 665-689. https://doi.org/10.1080/01495739.2016.1258602.
  57. Lei, J., He, Y., Li, Z., Guo, S. and Liu, D. (2019), "Post-buckling analysis of bi-directional functionally graded imperfect beams based on a novel third-order shear deformation theory", Compos. Struct., 209, 811-829. https://doi.org/10.1016/j.compstruct.2018.10.106.
  58. Li, L., Li, X. and Hu, Y. (2018), "Nonlinear bending of a two-dimensionally functionally graded beam", Compos. Struct., 184, 1049-1061. https://doi.org/10.1016/j.compstruct.2017.10.087.
  59. Liu, Y., Su, S., Huang, H. and Liang, Y. (2019), "Thermal-mechanical coupling buckling analysis of porous functionally graded sandwich beams based on physical neutral plane", Compos. Part B: Eng., 168, 236-242. https://doi.org/10.1016/j.compositesb.2018.12.063.
  60. Mahmoud, F.F. (2017), "On the nonexistence of a feasible solution in the context of the differential form of Eringen's constitutive model: a proposed iterative model based on a residual nonlocality formulation", Int. J. Appl. Mech., 9(07), 1750094. https://doi.org/10.1142/S1758825117500946.
  61. Melaibari, A., Khoshaim, A.B., Mohamed, S.A. and Eltaher, M.A. (2020), "Static stability and of symmetric and sigmoid functionally graded beam under variable axial load", Steel Compos. Struct., 35(5), 671-685. https://doi.org/10.12989/scs.2020.35.5.671.
  62. Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A. and Kazemi, M. (2017b), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct. 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415
  63. Mirjavadi, S.S., Rabby, S., Shafiei, N., Afshari, B.M. and Kazemi, M. (2017a), "On size-dependent free vibration and thermal buckling of axially functionally graded nanobeams in thermal environment", Appl. Phys. A, 123(5), 315. https://doi.org/10.1007/s00339-017-0918-1.
  64. Nateghi, A. and Salamat-talab, M. (2013), "Thermal effect on size dependent behavior of functionally graded microbeams based on modified couple stress theory", Compos. Struct., 96, 97-110. https://doi.org/10.1016/j.compstruct.2012.08.048.
  65. Nejad, M.Z. and Hadi, A. (2016), "Non-local analysis of free vibration of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 105, 1-11. https://doi.org/10.1016/j.ijengsci.2016.04.011.
  66. Nejad, M.Z., Hadi, A. and Rastgoo, A. (2016), "Buckling analysis of arbitrary two-directional functionally graded Euler-Bernoulli nano-beams based on nonlocal elasticity theory", Int. J. Eng. Sci., 103, 1-10. https://doi.org/10.1016/j.ijengsci.2016.03.001.
  67. Nemat-Alla, M. (2003), "Reduction of thermal stresses by developing two-dimensional functionally graded materials", Int. J. Solids Struct., 40(26), 7339-7356. https://doi.org/10.1016/j.ijsolstr.2003.08.017.
  68. Nguyen, D.K., Nguyen, Q.H. and Tran, T.T. (2017), "Vibration of bi-dimensional functionally graded Timoshenko beams excited by a moving load", Acta Mechanica. 228(1), 141-155. https://doi.org/10.1007/s00707-016-1705-3.
  69. Pydah, A. and Sabale, A. (2017), "Static analysis of bi-directional functionally graded curved beams", Compos. Struct., 160, 867-876. https://doi.org/10.1016/j.compstruct.2016.10.120.
  70. Rajasekaran, S. and Khaniki, H.B. (2018), "Free vibration analysis of bi-directional functionally graded single/multi-cracked beams", Int. J. Mech. Sci., 144, 341-356. https://doi.org/10.1016/j.ijmecsci.2018.06.004.
  71. Rajasekaran, S. and Khaniki, H.B. (2019), "Size-dependent forced vibration of non-uniform bi-directional functionally graded beams embedded in variable elastic environment carrying a moving harmonic mass", Appl. Mathem. Modelling, 72, 129-154. https://doi.org/10.1016/j.apm.2019.03.021.
  72. Reddy, J. and Chin, C. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Thermal Stress. 21(6), 593-626. https://doi.org/10.1080/01495739808956165.
  73. Reddy, J.N. (1984), A Simple Higher-Order Theory for Laminated Composite Plates.
  74. Romano, G., Barretta, R. and Diaco, M. (2019), "Iterative methods for nonlocal elasticity problems", Continuum Mech. Thermodyn., 31(3), 669-689. https://doi.org/10.1007/s00161-018-0717-8.
  75. Sahmani, S. and Safaei, B. (2020), "Influence of homogenization models on size-dependent nonlinear bending and postbuckling of bi-directional functionally graded micro/nano-beams", Appl. Mathem. Modelling, 82, 336-358. https://doi.org/10.1016/j.apm.2020.01.051.
  76. Shafiei, N. and Kazemi, M. (2017), "Buckling analysis on the bi-dimensional functionally graded porous tapered nano-/microscale beams", Aerospace Sci. Technol., 66, 1-11. https://doi.org/10.1016/j.ast.2017.02.019.
  77. Shafiei, N. and She, G.L. (2018), "On vibration of functionally graded nano-tubes in the thermal environment", Int. J. Eng. Sci., 133, 84-98. https://doi.org/10.1016/j.ijengsci.2018.08.004.
  78. Shafiei, N., Mirjavadi, S.S., Afshari, B.M., Rabby, S. and Hamouda, A. (2017a), "Nonlinear thermal buckling of axially functionally graded micro and nanobeams", Compos. Struct., 168, 428-439. https://doi.org/10.1016/j.compstruct.2017.02.048.
  79. Shafiei, N., Mirjavadi, S.S., MohaselAfshari, B., Rabby, S. and Kazemi, M. (2017b), "Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams", Comput. Meth. Appl. Mech. Eng., 322, 615-632. https://doi.org/10.1016/j.cma.2017.05.007.
  80. Shanab, R., Attia, M. and Mohamed, S. (2017), "Nonlinear analysis of functionally graded nanoscale beams incorporating the surface energy and microstructure effects", Int. J. Mech. Sci., 131, 908-923. https://doi.org/10.1016/j.ijmecsci.2017.07.055.
  81. Shanab, R.A., Mohamed, S.A., Mohamed, N.A. and Attia, M.A. (2020), "Comprehensive investigation of vibration of sigmoid and power law FG nanobeams based on surface elasticity and modified couple stress theories", Acta Mechanica, 1-34. https://doi.org/10.1007/s00707-020-02623-9.
  82. Sharma, P., Singh, R. and Hussain, M. (2020), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 234(5), 1085-1101. https://doi.org/10.1177/0954406219888234.
  83. She, G.L., Liu, H.B. and Karami, B. (2020), "On resonance behavior of porous FG curved nanobeams", Steel Compos. Struct., 36(2), 179-186. https://doi.org/10.12989/scs.2020.36.2.179.
  84. Simsek, M. (2015), "Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions", Compos. Struct., 133, 968-978. https://doi.org/10.1016/j.compstruct.2015.08.021.
  85. Simsek, M. (2016), "Buckling of Timoshenko beams composed of two-dimensional functionally graded material (2D-FGM) having different boundary conditions", Compos. Struct., 149, 304-314. https://doi.org/10.1016/j.compstruct.2016.04.034.
  86. Su, Z., Jin, G., Wang, L. and Wang, D. (2018), "Thermomechanical vibration analysis of size-dependent functionally graded micro-beams with general boundary conditions", Int. J. Appl. Mech., 10(08), 1850088. https://doi.org/10.1142/S1758825118500886.
  87. Tang, Y. and Ding, Q. (2019), "Nonlinear vibration analysis of a bi-directional functionally graded beam under hygro-thermal loads", Compos. Struct., 225, 111076. https://doi.org/10.1016/j.compstruct.2019.111076.
  88. Tang, Y., Lv, X. and Yang, T. (2019), "Bi-directional functionally graded beams: asymmetric modes and nonlinear free vibration", Compos. Part B: Eng., 156, 319-331. https://doi.org/10.1016/j.compositesb.2018.08.140.
  89. Thai, H.T., Vo, T.P., Nguyen, T.K. and Kim, S.E. (2017), "A review of continuum mechanics models for size-dependent analysis of beams and plates", Compos. Struct., 177, 196-219. https://doi.org/10.1016/j.compstruct.2017.06.040.
  90. Trinh, L.C., Vo, T.P., Thai, H.T. and Nguyen, T.K. (2018), "Size-dependent vibration of bi-directional functionally graded microbeams with arbitrary boundary conditions", Compos. Part B: Eng., 134, 225-245. https://doi.org/10.1016/j.compositesb.2017.09.054.
  91. Udupa, G., Rao, S.S. and Gangadharan, K. (2014), "Functionally graded composite materials: an overview", Procedia Mater. Sci., 5, 1291-1299. https://doi.org/10.1016/j.mspro.2014.07.442.
  92. Wagih, A., Attia, M.A., AbdelRahman, A.A., Bendine, K. and Sebaey, T.A. (2019), "On the indentation of elastoplastic functionally graded materials", Mech. Mater., 129, 169-188. https://doi.org/10.1016/j.mechmat.2018.11.012.
  93. Wang, Y., Ren, H., Fu, T. and Shi, C. (2020), "Hygrothermal mechanical behaviors of axially functionally graded microbeams using a refined first order shear deformation theory", Acta Astronautica. 166, 306-316. https://doi.org/10.1016/j.actaastro.2019.10.036.
  94. Wang, Z.H. and Wang, X.H. (2016), "Free vibration of two-directional functionally graded beams", Compos. Struct., 135, 191-198. https://doi.org/10.1016/j.compstruct.2015.09.013.
  95. Yang, F., Chong, A., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
  96. Yang, T., Tang, Y., Li, Q. and Yang, X.D. (2018), "Nonlinear bending, buckling and vibration of bi-directional functionally graded nanobeams", Compos. Struct., 204, 313-319. https://doi.org/10.1016/j.compstruct.2018.07.045.
  97. Yu, T., Hu, H., Zhang, J. and Bui, T.Q. (2019a), "Isogeometric analysis of size-dependent effects for functionally graded microbeams by a non-classical quasi-3D theory", Thin-Wall. Struct., 138, 1-14. https://doi.org/10.1016/j.tws.2018.12.006.
  98. Yu, T., Zhang, J., Hu, H. and Bui, T.Q. (2019b), "A novel size-dependent quasi-3D isogeometric beam model for two-directional FG microbeams analysis", Compos. Struct., 211, 76-88. https://doi.org/10.1016/j.compstruct.2018.12.014.
  99. Zhang, Z., Zhou, D., Xu, X. and Li, X. (2020), "Analysis of thick beams with temperature-dependent material properties under thermomechanical loads", Advan. Struct. Eng., 1369433220901810. https://doi.org/10.1177/1369433220901810.
  100. Zhao, L., Zhu, J. and Wen, X.D. (2016), "Exact analysis of bidirectional functionally graded beams with arbitrary boundary conditions via the symplectic approach", Struct. Eng. Mech., 59(1), 101-122. http://dx.doi.org/10.12989/sem.2016.59.1.101.