DOI QR코드

DOI QR Code

A Study of Antimicrobial Activity of Herbal Extracts on Clostridium difficile

Clostridium difficile에 대한 항균 한약재 탐색 연구

  • Seong, Eunhak (Department of Rehabilitation Medicine of Korean Medicine, College of Korean Medicine, Dongguk University) ;
  • Lim, Sookyoung (Department of Rehabilitation Medicine of Korean Medicine, College of Korean Medicine, Dongguk University) ;
  • Lee, Myeongjong (Department of Rehabilitation Medicine of Korean Medicine, College of Korean Medicine, Dongguk University) ;
  • Kim, Hojun (Department of Rehabilitation Medicine of Korean Medicine, College of Korean Medicine, Dongguk University)
  • 성은학 (동국대학교 한의과대학 한방재활의학과교실) ;
  • 임수경 (동국대학교 한의과대학 한방재활의학과교실) ;
  • 이명종 (동국대학교 한의과대학 한방재활의학과교실) ;
  • 김호준 (동국대학교 한의과대학 한방재활의학과교실)
  • Received : 2020.10.29
  • Accepted : 2020.11.11
  • Published : 2021.01.31

Abstract

Objectives This study was conducted to confirm the possibility of Clostridium difficile infection (CDI) treatment through natural herbal medicines. Methods After screening a total of 77 herbal medicines through the paper disc agar diffusion method, we selected the herbal medicines that showed a effectiveness compared to the positive control vancomycin. Afterwards, drugs that showed inhibitory effects compared to C. difficile without inhibition of Bifidobacterium bifidum and Lactobacillus plantarum, known as beneficial bacteria, were selected and minimal inhibitory concentration (MIC) was confirmed by applying the Broth microdilution method. Results The Coptidis Rhizoma, well known for its antimicrobial effect, was found to have antimicrobial effects on C. difficile, but also had inhibitory effects on the beneficial bacterium B. bifidum. 30% ethanol extraction Crataegi fructus, Corni fructus and Mume fructus had antimicrobial effects on C. difficile without inhibiting the beneficial bacteria B. bifidum and L. plantarum. The MIC values of 30% ethanol extraction Crataegi fructus, Corni fructus and Mume fructus were found to be 10 mg/mL, 20 mg/mL and 5 mg/mL, respectively. Conclusions Crataegi fructus, Corni fructus and Mume fructus were identified as candidate medicines for C. difficile. Further researchs will need to be done in vivo, and to find an optimal extraction method accompanied by economic evaluation.

Keywords

References

  1. Abt MC, McKenney PT, Pamer EG. Clostridium difficile colitis: pathogenesis and host defence. Nat Rev Microbiol. 2016;14(10):609-20. https://doi.org/10.1038/nrmicro.2016.108
  2. Hookman P, Barkin JS. Clostridium difficile associated infection, diarrhea and colitis. World J Gastroenterol. 2009;15(13):1554. https://doi.org/10.3748/wjg.15.1554
  3. Khanna S, Pardi DS. The growing incidence and severity of Clostridium difficile infection in inpatient and outpatient settings. Expert Rev Gastroenterol Hepatol. 2010;4(4):409-16. https://doi.org/10.1586/egh.10.48
  4. Weppner J, Gabet J, Linsenmeyer M, Yassin M, Galang G. Clostridium difficile infection reservoirs within an acute rehabilitation environment. Am J Phys Med Rehab. 2020;100(1):44-7.
  5. Choi HY, Park SY, Kim YA, Yoon TY, Choi JM, Choe BK, Ahn SH, Yoon SJ, Lee YR, Oh IH. The epidemiology and economic burden of Clostridium difficile infection in Korea. Biomed Res Int. 2015;2015:510386. https://doi.org/10.1155/2015/510386
  6. Tanovic E, Tanovic H, Kadic A, Vrabac D, Selimovic S, Kostic D. The effect of the infection Clostridium difficile on the rehabilitation. J Health Sci. 2014;4(1):55-8. https://doi.org/10.17532/jhsci.2014.146
  7. Leffler DA, Lamont JT. Clostridium difficile infection. N Engl J Med. 2015;372(16):1539-48. https://doi.org/10.1056/NEJMra1403772
  8. Spigaglia P, Mastrantonio P, Barbanti F. Antibiotic resistances of Clostridium difficile. Adv Exp Med Biol. 2018;1050:137-59. https://doi.org/10.1007/978-3-319-72799-8_9
  9. Shin YJ, Lee BJ. Fecal microbiota transplantation as a treatment of recurrent Clostridium difficile infection: where are we now and where are we heading? Korean J Gastroenterol. 2017;69(4):203-5. https://doi.org/10.4166/kjg.2017.69.4.203
  10. Gao Y, Li H, Yang H, Su J, Huang L. The current novel therapeutic regimens for Clostridium difficile infection (CDI) and the potentials of traditional Chinese medicine in treatment of CDI. Crit Rev Microbiol. 2019;45(5-6): 729-42. https://doi.org/10.1080/1040841X.2019.1700905
  11. Ya-Nan G, Jun W, Hao-Jun Z, Hong-Bing J, Ping L, Xin-Zhu L. Traditional Chinese medicine QPYF as preventive treatment for Clostridium difficile associated diarrhea in a mouse model. Evid Based Complement Alternat Med. 2016;2016:3759819.
  12. Aljarallah KM. Inhibition of Clostridium difficile by natural herbal extracts. J Taibah Univ Med Sci. 2016; 11(5):427-31. https://doi.org/10.1016/j.jtumed.2016.05.006
  13. Hammond EN, Donkor ES. Antibacterial effect of Manuka honey on Clostridium difficile. BMC Res Notes. 2013;6(1):188. https://doi.org/10.1186/1756-0500-6-188
  14. Shilling M, Matt L, Rubin E, Visitacion MP, Haller NA, Grey SF, Woolverton CJ. Antimicrobial effects of virgin coconut oil and its medium-chain fatty acids on Clostridium difficile. J Med Food. 2013;16(12):1079-85. https://doi.org/10.1089/jmf.2012.0303
  15. Finegold SM, Summanen PH, Corbett K, Downes J, Henning SM, Li Z. Pomegranate extract exhibits in vitro activity against Clostridium difficile. Nutrition. 2014; 30(10):1210-2. https://doi.org/10.1016/j.nut.2014.02.029
  16. Georgescu M, Ginghina O, Raita S, Tapaloaga D, Ilie L, Negrei C, Popa DE, Varlas V, Multescu R, Rosca AC, Mirica R, Georgescu D. Natural alternative remedies in the background of updated recommendations for the prophylactic and therapeutic approach of clostridium difficile infections. Farmacia. 2018;66:563-72. https://doi.org/10.31925/farmacia.2018.4.1
  17. Lee IC, Kim MK. Antioxidant, antimicrobial and anti-inflammatory of mixed medicinal herb extract. Kor J Herbol. 2015;30(5):51-8. https://doi.org/10.6116/KJH.2015.30.5.51.
  18. Lee B-W, Shin D-H. Screening of natural antimicrobial plant extract on food spoilage microorganisms. Korean J Food Sci Technol. 1991;23(2):200-4.
  19. Park UY, Chang DS, Cho HR. Screening of antimicrobial activity for medicinal herb extracts. J Korean Soc Food Sci Nutr. 1992;21(1):91-6.
  20. Surawicz CM, Brandt LJ, Binion DG, Ananthakrishnan AN, Curry SR, Gilligan PH, McFarland LV, Mellow M, Zuckerbraun BS. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am J Gastroenterol. 2013;108(4):478-98. https://doi.org/10.1038/ajg.2013.4
  21. Kato N, Ou C-Y, Kato H, Bartley SL, Brown VK, Dowell VR, Ueno K. Identification of toxigenic Clostridium difficile by the polymerase chain reaction. J Clin Microbiol. 1991;29(1):33-7. https://doi.org/10.1128/JCM.29.1.33-37.1991
  22. Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3(2):163. https://doi.org/10.1038/nprot.2007.521
  23. Bartlett JG, Chang TW, Gurwith M, Gorbach SL, Onderdonk AB. Antibiotic-associated pseudomembranous colitis due to toxin-producing clostridia. N Engl J Med. 1978;298(10):531-4. https://doi.org/10.1056/NEJM197803092981003
  24. Starr J. Clostridium difficile associated diarrhoea: diagnosis and treatment. Bmj. 2005;331(7515):498-501. https://doi.org/10.1136/bmj.331.7515.498
  25. Marciniak C, Chen D, Stein AC, Semik PE. Prevalence of Clostridium difficile colonization at admission to rehabilitation. Arch Phys Med Rehabil. 2006;87(8): 1086-90. https://doi.org/10.1016/j.apmr.2006.03.020
  26. Huang JY, Lee SM, Mazmanian SK. The human commensal Bacteroides fragilis binds intestinal mucin. Anaerobe. 2011;17(4):137-41. https://doi.org/10.1016/j.anaerobe.2011.05.017
  27. Wang Y, Guo Y, Chen H, Wei H, Wan C. Potential of Lactobacillus plantarum ZDY2013 and Bifidobacterium bifidum WBIN03 in relieving colitis by gut microbiota, immune, and anti-oxidative stress. Can J Microbiol. 2018;64(5):327-37. https://doi.org/10.1139/cjm-2017-0716
  28. Rahman M, Sarker S. Antimicrobial natural products. Cambridge, MA:Academic Press. 2020.
  29. Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev. 1999;12(4):564-82. https://doi.org/10.1128/CMR.12.4.564
  30. Korea Pharmaceutical Information Center. Information of herbal medicines [Internet]. [cited 2020 Oct 27]. Available from: https://www.health.kr/researchInfo/herbalMedicine1_detail.asp?idx=346.
  31. Yang Y, Ye X, Li X. Antimicrobial effect of four alkaloids from Coptidis Rhizome. Lishizhen Med Mater Med Res. 2007;18(12):3013-4. https://doi.org/10.3969/j.issn.1008-0805.2007.12.069
  32. Wang J, Wang L, Lou G-H, Zeng H-R, Hu J, Huang Q-W, Peng W, Yang X-B. Coptidis Rhizoma: a comprehensive review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. Pharm Biol. 2019; 57(1):193-225. https://doi.org/10.1080/13880209.2019.1577466
  33. Korea Pharmaceutical Information Center. Information of herbal medicines [Internet]. [cited 2020 Oct 27]. Available from: https://www.health.kr/researchInfo/herbalMedicine1_detail.asp?idx=537.
  34. Jung SM, Choi SI, Park SM, Heo TR. Antimicrobial effect of Achyranthes japonica Nakai extracts against Clostridium difficile. Korean J Food Sci Technol. 2007; 39(5):564-8.
  35. Korea Pharmaceutical Information Center. Information of herbal medicines [Internet]. [cited 2020 Oct 27]. Available from: https://www.health.kr/researchInfo/herbalMedicine1_detail.asp?idx=473.
  36. Mau J-L, Chen C-P, Hsieh P-C. Antimicrobial effect of extracts from Chinese chive, cinnamon, and corni fructus. J Agric Food Chem. 2001;49(1):183-8. https://doi.org/10.1021/jf000263c
  37. Korea Pharmaceutical Information Center. Information of herbal medicines [Internet]. [cited 2020 Oct 27]. Available from: https://www.health.kr/researchInfo/herbalMedicine1_detail.asp?idx=466.
  38. Mitani T, Ota K, Inaba N, Kishida K, Koyama HA. Antimicrobial activity of the phenolic compounds of Prunus mume against Enterobacteria. Biol Pharm Bull. 2018;41(2):208-12. https://doi.org/10.1248/bpb.b17-00711
  39. Lee JH, Stein BD. Antimicrobial activity of a combination of Mume fructus, Schizandrae fructus, and Coptidis rhizoma on enterohemorrhagic Escherichia coli O26, O111, and O157 and its effect on Shiga toxin releases. Foodborne Pathog Dis. 2011;8(5):643-6. https://doi.org/10.1089/fpd.2010.0710
  40. Lin T-H, Huang S-H, Wu C-C, Liu H-H, Jinn T-R, Chen Y, Lin CT. Inhibition of Klebsiella pneumoniae growth and capsular polysaccharide biosynthesis by Fructus mume. Evid Based Complement Alternat Med. 2013; 2013. doi:10.1155/2013/621701
  41. Kim SY, Kim JH, Yu KY, Lee HS, Jeon IH, Kang HJ, Lee JN, Choi BM Jang SI. Synergic antimicrobial activity of Scutellariae Radix, Coptidis Rhizoma and Salicylic Acid combination against Escherichia coli and Pseudomonas aeruginosa. J Physiol & Pathol Korean Med. 2014;28(4):390-5.
  42. Kwon HA, Kwon Y-J, Kwon D-Y, Lee JH. Evaluation of antibacterial effects of a combination of Coptidis Rhizoma, Mume Fructus, and Schizandrae Fructus against Salmonella. International Journal of Food Microbiology. 2008;127(1-2):180-3. https://doi.org/10.1016/j.ijfoodmicro.2008.06.020
  43. Korean Traditional Knowledge Portal [Internet]. [cited 2020 Oct 27]. Available from: https://www.koreantk.com/ktkp2014/prescription/prescription-view.view?preCd=P0019860.