DOI QR코드

DOI QR Code

A Study on the Driving Characteristics of Microbial Fuel Cell Using Mixed Strains in Domestic Wastewater

생활폐수 내 혼합균주를 이용한 미생물 연료전지의 구동 특성에 관한 연구

  • KIM, SANG KYU (Department of Energy Storage Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University) ;
  • YOO, DONG JIN (Department of Energy Storage Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University)
  • 김상규 (전북대학교 대학원 에너지저장.변환공학과(BK21 FOUR), 수소.연료전지연구센터) ;
  • 유동진 (전북대학교 대학원 에너지저장.변환공학과(BK21 FOUR), 수소.연료전지연구센터)
  • Received : 2021.10.30
  • Accepted : 2021.12.02
  • Published : 2021.12.30

Abstract

The use of fossil fuels is a major contributor to the increase atmospheric greenhouse gas emissions. As such problems arise, interest in new and renewable energy devices, particularly fuel cells, is greatly increasing. In this study, various characteristics of mixed strains were observed in wastewater collected by the Jeonju Environment Office to investigate the effects of microorganisms on voltage generation and voltage generation of substrates, electrode materials, electrons, electron transport media, and ash microbial fuel cells. As a result of separately measuring the voltage generated during inoculation, the inoculation voltage of Escherichia coli K12 (E. coli K12) was 0.45 V, and the maximum inoculation voltage of the mixed strain was 1.2 V. Thereafter, voltage values were collected using a digital multimeter and the amount of voltage generated over time was measured. In the case of E. coli K12, the maximum voltage reached 0.45 V, and the cell voltage was maintained above 0.23 V for 140 hours. In contrast, for the mixed strain, the maximum voltage reached 1.2 V and the voltage was slowly decreased to 0.97 V. In addition, the degree of microbial adsorption to the electrod surface after the inoculation test was confirmed using a scanning electron microscope. Therefore, these results showed the possibility of purifying pollutants at the same time as power generation through the production of hydrogen ions using microorganisms and wastewater.

Keywords

Acknowledgement

이 성과는 2020년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(No. 2020R1A2B5B01001458).

References

  1. J. Li, Q. Chen, T. Wang, H. Wang, and J. Ni, "Hydrochemistry and nutrients determined the distribution of greenhouse gases in saline groundwater", Environmental Pollution, Vol. 286, 2021, pp. 117383, doi: https://doi.org/10.1016/j.envpol.2021.117383.
  2. D. Han and D. J. Yoo, "Synthesis and charaterization of polybenzimidazole random copolymers containing methylene chain for high temperature PEMFC", Trans Korean Hydrogen New Energy Soc, Vol. 29, No. 6, 2018, pp. 578-586, doi: https://doi.org/10.7316/KHNES.2018.29.6.578.
  3. S. K. Ryu, M. Vinothkannan, A. R. Kim, and D. J. Yoo, "Effect of type and stoichiometry of fuels on performance of polybenzimidazole-based proton exchange membrane fuel cells operating at the temperature range of 120-160 ℃", Energy, Vol. 238, 2022, pp. 121791, doi: https://doi.org/10.1016/j.energy.2021.121791.
  4. J. Y. Chu, A. R. Kim, K. S. Nahm, H. K. Lee, and D. J. Yoo, "Synthesis and characterization of partially fluorinated sulfonated poly(arylene biphenylsulfone ketone) block copolymers containing 6F-BPA and perfluorobiphenylene units", International Journal of Hydrogen Energy, Vol. 38, No. 14, 2013, pp. 6268-6274, doi: https://doi.org/10.1016/j.ijhydene.2012.11.144.
  5. K. H. Lee, J. Y, Chu, A. R. Kim, K. S. Nahm, C. J. Kim, and D. J. Yoo, "Densely sulfonated block copolymer composite membranes containing phosphotungstic acid for fuel cell-membranes", Journal of Membrane Science, Vol. 434, 2013, pp. 35-43, doi:https://doi.org/10.1016/j.memsci.2013.01.037.
  6. D. Park, Y. J. Sohn, Y. Y. Choi, M. Kim, and J. Hong, "A study on oxygen diffusion characteristics according to changes in flow field shape of polymer electrolyte membrane fuel cell metallic bipolar plate for building", Trans Korean Hydrogen New Energy Soc, Vol. 32, No. 4, 2021, pp. 245-255, doi: http://dx.doi.org/10.7316/KHNES.2021.32.4.245.
  7. G. G. Kumar, A. R. Kim, K. S. Nahm, D. J. Yoo, and R. Elizabeth, "High ion and lower molecular transportation of the poly vinylidene fluoride-hexa fluoro propylene hybrid membranes for the high temperature and lower humidity direct methanol fuel cell applications", Journal of Power Sources, Vol. 195, No. 18, 2010, pp. 5922-5928, doi: https://doi.org/10.1016/j.jpowsour.2009.11.021.
  8. Y. Cao, H. Mu, W. Liu, R. Zhang, J. Guo, M. Xian, and H. Liu, "Electricigens in the anode of microbial fuel cells: pure cultures versus mixed communities", Microbial Cell Factories, Vol. 18, No. 39, 2019, doi: https://doi.org/10.1186/s12934-019-1087-z.
  9. B. E. Logan, "Microbial fuel cells", Wiley, 2007, pp. 146-161, doi: https://doi.org/10.1002/9780470258590.
  10. C. Karthikeyan, Y. Sathishkumar, Y. S. Lee, A. R. Kim, D. J. Yoo, and G. G. kumar, "The influence of chitosan substrate and its nanometric form toward the green power generation in sediment microbial fuel cell", J. Nanoscience and Nanotechnology, Vol. 17, No. 1, 2017, pp. 558-563, https://doi.org/10.1166/jnn.2017.12090.
  11. J. Y. Chu, K. H. Lee, A. R. Kim, and D. J. Yoo, "Study on the chemical stabilities of poly (arylene ether) random copolymers for alkaline fuel cells: effect of main chain structures with different monomer units", ACS Sustainable Chemistry & Engineering, Vol. 7, No. 24, 2019, pp. 20077-20087, doi: https://doi.org/10.1021/acssuschemeng.9b05934.
  12. R. Kannan, A. R. Kim, and D. J. Yoo, "Enhanced electrooxidation of methanol, ethylene glycol, glycerol, and xylitol over a polypyrrole/manganese oxyhydroxide/palladium nanocomposite electrode", J. Appl. Electrochem., Vol. 44, 2014, pp 893-902, doi: https://doi.org/10.1007/s10800-014-0706-y.
  13. D. J. Yoo, S. H. Hyun, A. R. Kim, G. G. Kumar, and K. S. Nahm, "Novel sulfonated poly(arylene biphenylsulfone ether) copolymers containing bisphenylsulfonyl biphenyl moiety: structural, thermal, electrochemical and morphological characteristics", Polymer International, Vol. 60, No. 1, 2010, pp. 85-92, doi: https://doi.org/10.1002/pi.2914.
  14. K. Rabaey and W. Verstraete, "Microbial fuel cells: novel biotechnology for energy generation", Trends Biotechnology, Vol. 23, No. 6, 2005, pp. 291-298, doi: https://doi.org/10.1016/j.tibtech.2005.04.008.
  15. W. Kong, Q. Guo, X. Wang, and X. Yue, "Electricity generation from wastewater using an anaerobic fluidized bed microbial fuel cell", Industrial & Engineering Chemistry Research, Vol. 50, No. 21, 2011, pp. 1225-12232, doi: https://doi.org/10.1021/ie2007505.
  16. J. R. Kim, S. Cheng, S. E. Oh, and B. E. Logan, "Power generaion using different cation, anion, and ultrafiltration membrane in microbial fuel cells", Environ. Sci. Technol., Vol. 41, No. 3, 2007, pp. 1004-1009, doi: https://doi.org/10.1021/es062202m.
  17. M. Grzebyk and G Pozniak, "Microbial fuel cells (MFCs) with interpolymer cation exchange membranes", Separation and Purification Technology, Vol. 41, No. 3, 2005, pp. 321-328, doi: https://doi.org/10.1016/j.seppur.2004.04.009.
  18. M. Rahimnejad, A. Adhami, S. Darvari, A. Zirepour, and S. E. Oh, "Microbial fuel cell as new technology for bioelectricity generation: a review", Alexandria Engineering Journal, Vol. 54, No. 3, 2015, pp. 745-756, doi: https://doi.org/10.1016/j.aej.2015.03.031.
  19. T. H. Choi, H. W. Kim, and H. B. Park, "Current research trends in microbial fuel cell based on polymer electrolyte membranes", The Membrane Society of Korea, Vol. 20, No. 3, 2010, pp. 173-184. Retrieved from http://203.250.217.22/article/JAKO201009654401239.pdf.
  20. I. H. Park, G. G. Kumar, A. R. Kim, P. Kim, and K. S. Nahm, "Microbial electricity generation of diversified carbonaceous electrodes under variable mediators", Bioelectrochemistry, Vol. 80, No. 2, 2011, pp. 99-104, doi: https://doi.org/10.1016/j.bioelechem.2010.06.007.
  21. J. X. Leong, W. R. W. Daud, M. Ghasemi, K. B. Liew, and M. Ismail, "Ion exchange membranes as separators in microbial fuel cells for bioenergy conversion: a comprehensive review", Renewable and Sustainable Energy Reviews, Vol. 28, 2013, pp. 575-587, doi: https://doi.org/10.1016/j.rser.2013.08.052.
  22. A. R. Kim, J. C. Gavunada, and D. J. Yoo, "Amelioration in physicochemical properties and single cell performance of sulfonated poly(ether ether ketone) block copolymer composite membrane using sulfonated carbon nanotubes for intermediate humidity fuel cells", International Journal of Energy Research, Vol. 43, No. 7, 2019, pp. 2974-2989, doi: https://doi.org/10.1002/er.4494.
  23. S. P. Jung, E. Kim, and B. Koo, "Effects of wire-type and mesh-type anode current collectors on performance and electrochemistry of microbial fuel cells", Chemosphere, Vol. 209, 2018, pp. 542-550, doi: https://doi.org/10.1016/j.chemosphere.2018.06.070.
  24. C. W. Lin, C. H. Wu, Y. H. Chiu, and S. L. Tsai, "Effects of different mediators on electricity generation and microbial structure of a toluene powered microbial fuel cell", Fuel, Vol. 125, 2014, pp. 30-35, doi: https://doi.org/10.1016/j.fuel.2014.02.018.
  25. D. H Park and J. G Zeikus, "Electricity generation in microbial fuel cells using neutral red as an electronophore", Applied and Environmental Microbiology, Vol. 66, No. 4, 2000, pp. 1292-1297, doi: https://doi.org/10.1128/AEM.66.4.1292-1297.2000.
  26. B. E. Logan, B. Hamelers, R. Rozendal, U. Schroder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey, "Microbial fuel cells: methodology and technology", Environmental Science & Technology, Vol. 40, No. 17, 2006, pp. 5181-5192, doi: https://doi.org/10.1021/es0605016.
  27. C. J. Park, A. R. Kim, and D. J. Yoo, "Preparation and charaterization of SPAES/SPVdF-co-HFP blending membranes for polymer electrolyte membrane fuel cells", Trans Korean Hydrogen New Energy Soc, Vol. 30, No. 3, 2019, pp. 227-236, doi: https://doi.org/10.7316/KHNES.2019.30.3.227.
  28. N. Eaktasang, C. S. Kang, S. J. Ryu, Y. Suma, and H. S. Kim, "Enhanced current production by electroactive biofilm of sulfate-reducing bacteria in the microbial fuel cell", Environmental Engineering Research, Vol. 18, No. 4, 2013, pp. 277-281, doi: https://doi.org/10.4491/eer.2013.18.4.277.
  29. N. Uria, I. Ferrera, and J. Mas, "Electrochemical performance and microbial community profiles in microbial fuel cells in relation to electron transfer mechanisms", BMC Microbiology, Vol. 17, 2017, pp. 208, doi: https://doi.org/10.1186/s12866-017-1115-2.
  30. D. A. Nguyen, N. Pham, and H. T. Pham, "Wastewater treatment performance and microbial community of anode electrodes of membrane and membrane-less MFCs under effect of sunlight", Journal of Water Process Engineering, Vol. 42, 2021, pp. 102159, doi: https://doi.org/10.1016/j.jwpe.2021.102159.
  31. W. Wang, Q. Zhao, J. Ding, K. Wang, and J. Jiang, "Develpoment of an MFC-powered BEF system with novel Fe-Mn-Mg/CF composite cathode to degrade refractory pollutants", Journal of Clearner Production, Vol. 326, 2021, pp. 129348, doi: https://doi.org/10.1016/j.jclepro.2021.129348.