DOI QR코드

DOI QR Code

유압 배관 진동 감쇠를 위한 동조질량감쇠기 최적 설계

Design optimization of tuned mass damper for the vibration of hydraulic pipeline

  • 김찬경 (부산대학교 대학원 기계공학부) ;
  • 백승훈 (부산대학교 대학원 기계공학부)
  • 투고 : 2020.12.09
  • 심사 : 2021.01.04
  • 발행 : 2021.01.31

초록

본 논문에서는 유체의 이동에 의한 배관의 진동을 저감시키기 위해 동조질량감쇠기(Tuned Mass Damper, TMD)의 최적 설계를 수행하였다. 배관 설비의 정확한 진원과 배관의 사양을 알지 못하는 상황에서 TMD 설계를 하기 위해 MATLAB을 이용하여 배관시스템 모델을 설계하고, 이를 바탕으로 최적 설계 방법을 개발하였다. 개발된 최적화 방법은 ANSYS Workbench에서 유한요소 모델을 이용해 최적 설계 방법을 검증했다. 그리고 실제 배관 시스템의 측정값을 바탕으로 진동수를 보정할 수 있도록 TMD를 설계 및 제작하고 실제 배관 시스템에 설치해 감쇠 진폭이 95% 수준으로 줄어든 것을 확인했다.

This paper carried out the optimal design of Tuned Mass Damper (TMD) to attenuate the vibrational energy of pipeline subjected to fluid movement. Under the uncertainty of the vibration source and the specification of a pipeline system, an adaptive approach to design TMD is suggested. A surrogate pipeline system model was designed using MATLAB, and the optimal design method was developed based on the surrogate pipe model. The developed optimization method was validated using Finite Element (FE) model in ANSYS Workbench. And the TMD was designed to account for measurement error and installed on the industrial pipeline system. It showed that the pipeline vibrational amplitude was reduced by 95 % after installing the TMD.

키워드

참고문헌

  1. S. Rechenberger and D. Mair, "Vibration control of piping system and structures using tuned mass dampers," Proc. Pressure Vessels and Piping Conf. 1-10 (2017).
  2. T. A. Sakr, "Vibration control of buildings by using partial floor loads as multiple tuned mass dampers," HBRC. J. 13, 133-144 (2017). https://doi.org/10.1016/j.hbrcj.2015.04.004
  3. J. F. Wang and C. C. Lin, "Seismic performance of multiple tuned mass dampers for soil-irregular building interaction system," Solid and Structures, 42, 5536-5554 (2005). https://doi.org/10.1016/j.ijsolstr.2005.02.042
  4. Y. Yang, J. Munoa, and Y. Altintas, "Optimization of multiple tuned mass dampers to suqqress machine tool chatter," Int. J. machine tolls and manufacture, 50, 834-842 (2010). https://doi.org/10.1016/j.ijmachtools.2010.04.011
  5. H. Zuo, K. Bi, and H. Hao, "Using mult iple t uned mass damper to control offchore wind turbine vibrations under multiple hazards," Engineering Structures, 141, 303-315 (2017). https://doi.org/10.1016/j.engstruct.2017.03.006
  6. C. C. Lin, J. F. Wang, and B. L. Chen, "Train-induced vibration control of high-speed railway bridges equipped with multiple tuned mass dampers," J. Bridge and Engineering, 10, 398-414 (2005). https://doi.org/10.1061/(ASCE)1084-0702(2005)10:4(398)
  7. Y.-A Lai, J.-Y. Kim, C.-S. W. Yang, and L.-L. Chung, "A low-cost and efficient d33-mode piezoelectric tuned mass damper with simultaneously optimized electrcal and mechanical tuning," J. Intelligent Material Systems and Structures, 1-19 (2020). https://doi.org/10.1177/1045389X04152001
  8. J. Jiang, S. C. M. Ho, N. J. Markle, N. Wang, and G. Song, "Design and control performance of a frictional tuned mass damper with bearing-shaft assemblies," J. Vib. Control, 25, 1812-1822 (2019). https://doi.org/10.1177/1077546319832429
  9. J. Tan, S. C. M Ho, P. Zhang, and J. Jiang, "Experimental study on vibration control of suspended piping system by single-sided pounding tuned mass damper," Appl. Sci. 9, 1-17 (2019).
  10. W. Wang, X. Wang, X. Hua, G. Song, and Z. Chen, "Vibration control of vortex-induced vibration of a bridge deck by a single side pounding tuned mass damper," Engineering Structures, 173, 61-75 (2018). https://doi.org/10.1016/j.engstruct.2018.06.099
  11. W. Wang, X. Wang, X. Hua, G. Song, and Z. Chen, "Modeling, simulation and validation of a pendlum-pounding tuned mass damper for vibration control," Struct. Control Health Monit. 26, 1-20 (2019).
  12. S. V. Bakre and R. S. Jangid, "Optimum parameters of uned mass damper for damped damped main system," Struct. Control Health Monit. 14, 448-470 (2018). https://doi.org/10.1002/stc.166
  13. S. Kwag, J. Kwak, H. Lee, J. Oh, and G.-H. Koo, "Enhancement in the seismic performance of a nuclear piping system using multiple tuned mass dampers," Energies, 12, 1-26 (2019). https://doi.org/10.3390/en12010001
  14. T. P. Bandivadekar and R. S. Jangid, "Optimization of multiple tuned mass dampers for vibration control of system under external excitation," J. Vib. Control, 19, 1854-1871 (2012). https://doi.org/10.1177/1077546312449849
  15. L. Zuo and S. A. Nayfeh, "Optimization of the individual stiffness and damping parameters in multiple tuned mass damper systems," J. Vib. Acoustics, 127, 77-83 (2005). https://doi.org/10.1115/1.1855929
  16. L. F. F. Miguel, R. H. Lopez, A. J. Torii, L. F. F. Miguel, and A. T. Beck, "Robust design optimozation of TMDs in vehicle-bridge coupled vibration problems," Engineering Structures, 126, 703-711 (2016). https://doi.org/10.1016/j.engstruct.2016.08.033