DOI QR코드

DOI QR Code

FEA Simulations on Water Absorption in Various Pre-Cracked Concretes

유한요소해석에 기반한 콘크리트 균열 조건에 따른 수분흡수 현상 분석

  • 김건수 (한국건설기술연구원 구조연구본부) ;
  • 박기태 (한국건설기술연구원 구조연구본부) ;
  • 김재환 (한국건설기술연구원 구조연구본부)
  • Received : 2021.07.19
  • Accepted : 2021.09.08
  • Published : 2021.10.30

Abstract

This study performed simulating water absorption in various pre-cracked concretes. 2D-Finite Element Analysis (2D-FEA) model was developed based on experimental results on the amount of absorbed water in concrete with the exposure time. Results from the 2D-FEA showed that both crack width and crack depth strongly affect the amount of absorbed water in cracked concrete. In addition, water absorption rate is introduced and a predictive equation is suggested to estimate the rate in order to quantify the amount of absorbed water in cracked concrete. It was confirmed that water absorption in concrete having less than 150 mm crack depth was dominated as a main transport factor regardless of crack width. Therefore, considering that steel corrosion caused by chlorides dissolved in water mainly occurs in reinforced concrete structures, it is necessary that crack depth as well as crack width should be investigated in reinforced concrete structures at the time of field-inspection.

본 연구에서는 콘크리트의 균열조건에 따른 수분 흡수 현상을 해석적으로 분석하였다. 흡수 시간의 증가에 따라 콘크리트 표면을 통해 흡수되는 수분의 양을 실험적으로 분석한 기존 연구 결과들을 바탕으로 2차원 유한요소해석 모델을 개발하였다. 고려된 균열조건은 균열 폭(0.1 mm, 0.3 mm), 균열 깊이(0 ~ 250 mm), 균열 간격(0 ~ 200 mm)이며 총 30개 모델에 대한 유한요소해석을 수행하였다. 유한요소해석을 수행한 결과, 콘크리트 균열부의 수분 흡수량 증가에 중요한 영향을 미치는 조건은 균열 폭 및 균열 깊이의 변화로 확인되었다. 또한 비균열 조건의 콘크리트에 비해 균열부에서 추가로 흡수되는 물의 양을 정량적으로 분석하기 위하여, 균열부 수분 흡수계수(Scrack) 개념을 도입하고 이를 추정하기 위한 예측 식을 제안하였다. 균열 깊이에 대한 분석 결과, 콘크리트 균열 폭과 관계없이 균열 깊이 150 mm 이하에서는 균열로 인한 수분 흡수가 활발하게 발생할 수 있음을 확인하였다. 따라서 외부에 노출된 철근콘크리트 구조물은 제설제와 같은 수용액 등의 흡수로 인하여 철근 부식이 발생할 수 있음을 고려하면, 실제 시설물의 균열 조건을 파악하기 위해서는 시설물의 점검 및 진단 시에 기존 균열 폭에 대한 조사뿐만 아니라 균열 깊이에 대한 조사도 함께 수행되어야 할 것으로 판단된다.

Keywords

Acknowledgement

이 연구는 한국건설기술연구원 주요사업 "DNA 기반 노후 교량 구조물 스마트 유지관리 플랫폼및 활용기술개발" 과제(20210289-001)를 통해 수행되었으며, 이에 감사드립니다.

References

  1. Alasward, G., Suryanto, B., and McCarter, W.J. (2018), Moisture Movement Within Concrete Exposed to Simulated Hot Arid/Semi-arid Conditions, Proceedings of the Institution of Civil Engineers - Construction Materials, 171, 1-15. https://doi.org/10.1680/jcoma.2018.171.1.1
  2. Angst, U. M., Hooton, R. D., Marchand, J., Page, C. L., Flatt, R. J., Elsener, B., Gehlen, C., and Gulikers, J. (2012), Present and Future Durability Challenges for Reinforced Concrete Structures, Materials and Corrosion, 63(12), 1047-1051. https://doi.org/10.1002/maco.201206898
  3. Castro J., Bentz, D., and Weiss J. (2011), Effect of Sample Conditioning on the Water Absorption of Concrete, Cement and Concrete Composites, 33, 805-813. https://doi.org/10.1016/j.cemconcomp.2011.05.007
  4. Hanzic, L., and Ilic, R. (2003), Relationship Between Liquid Sorptivity and Capillarity in Concrete, Cement and Concrete Research, 33(9), 1385-1388. https://doi.org/10.1016/S0008-8846(03)00070-X
  5. Jafarifar, N., Pilakoutas, K., and Bennett, T. (2014), Moisture Transport and Drying Shrinkage Properties of Steel-Fibre-Reinforced-Concrete, Construction and Building Materials, 73, 41-50. https://doi.org/10.1016/j.conbuildmat.2014.09.039
  6. Jones, A. E. K. (1997), Development of an Holistic Approach to Ensure the Durability of New Concrete Construction, British Cement Association, UK.
  7. KALIS (Korea Authority of Land & Infrastructure Safety). (2019), Facility Maintenance Guidelines, Ministry of Land, Infrastructure and Transport.
  8. Kanematsu, M., Maruyama, I., Noguchi, T., Iikura, H., and Tsuchiya, N. (2009), Quantification of Water Penetration into Concrete through Cracks by Neutron Radiography, Nuclear Instruments and Methods in Physics Research A, 605(1-2), 154-158. https://doi.org/10.1016/j.nima.2009.01.206
  9. Kim, K., Park, K., and Kim, J. (2020), Evaluating Chloride Absorption of Reinforced Concrete Structures with Crack Widths, Journal of the Korea Institute for Structural Maintenance and Inspection, 24(6), 10-16. https://doi.org/10.11112/JKSMI.2020.24.6.10
  10. Li, X., Chen, S., Xu, Q., & Xu, Y. (2018), Modeling capillary Water Absorption in Concrete with Discrete Crack Network, Journal of Materials in Civil Engineering, 30(1), 04017263. https://doi.org/10.1061/(asce)mt.1943-5533.0002122
  11. McCarter, W. J., Starrs, G., Chrisp, T. (2000), Electrical Conductivity, Diffusion, and Permeability of Portland CementBased Mortars, Cement and Concrete Research, 30, 1395-1400. https://doi.org/10.1016/S0008-8846(00)00281-7
  12. Roe, N., Huo, Z., Chandrashekhara, K., Buchok, A., and Brack, R. A, (2013), Advanced Moisture Modeling of Polymer Composites, Journal of Reinforced Plastics and Composites, 32(7), 437-449. https://doi.org/10.1177/0731684412470182
  13. Savija, B., Lukovic, M., and Schlangen, E. (2017), Influence of Cracking on Moisture Uptake in Strain-Hardening Cementitious Composites, Journal of Nanomechanics and Micromechanics, 7(1), 04016010. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000114
  14. Van Belleghem, B., Montoya, R., Dewanckele, J., Van den Steen, N., De Graeve, I., Deconinck, J., Cnudde, V., Van Tittelboom, K., and De Belie, N. (2016), Capillary Water Absorption in Cracked and Uncracked Mortar - A Comparison between Experimental Study and Finite Element Analysis, Construction and Building Materials, 110, 154-162. https://doi.org/10.1016/j.conbuildmat.2016.02.027
  15. Ye, H., Tian, Y., Jin, N., Jin, X., and Fu, C. (2013), Influence of Cracking on Chloride Diffusivity and Moisture Influential Depth in Concrete Subjected to Simulated Environmental Conditions, Construction and Building Materials, 47, 66-79. https://doi.org/10.1016/j.conbuildmat.2013.04.024