DOI QR코드

DOI QR Code

A Review on Development of PPO-based Anion Exchange Membranes

PPO 기반 음이온 교환막 소재 개발 동향

  • An, Seong Jin (School of Polymer Science and Engineering, Chonnam National University) ;
  • Kim, Ki Jung (School of Polymer Science and Engineering, Chonnam National University) ;
  • Yu, Somi (School of Polymer Science and Engineering, Chonnam National University) ;
  • Ryu, Gun Young (Department of Polymer Engineering, Graduate School, Chonnam National University) ;
  • Chi, Won Seok (School of Polymer Science and Engineering, Chonnam National University)
  • 안성진 (전남대학교 고분자융합소재공학부) ;
  • 김기중 (전남대학교 고분자융합소재공학부) ;
  • 유소미 (전남대학교 고분자융합소재공학부) ;
  • 류건영 (전남대학교 고분자공학과 대학원) ;
  • 지원석 (전남대학교 고분자융합소재공학부)
  • Received : 2021.11.16
  • Accepted : 2021.12.15
  • Published : 2021.12.31

Abstract

Anion exchange membranes have been used for water electrolysis, which can produce hydrogen, and fuel cells, which can generate electrical energy using hydrogen fuel. Anion exchange membranes operate based on hydroxide ion (OH-) conduction under alkaline conditions. However, since the anion exchange membrane shows relatively low ion conductivity and alkaline stability, there is still a limit to its commercialization in water electrolysis and fuel cells. To address these issues, it is important to develop novel anion exchange membrane materials by rationally designing a polymer structure. In particular, the polymer structure and synthetic method need to be controlled. By doing so, for polymers, the physical properties, ionic conductivity, and alkaline stability can be maintained. Among many anion exchange membranes, poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) is commercially available and easily accessible. In addition, the PPO has relatively high mechanical and chemical stability compared to other polymers. In this review, we introduce the recent development strategy and characteristics of PPO-based polymer materials used in anion exchange membranes.

음이온 교환막은 수소를 생산할 수 있는 수전해와 수소 연료를 사용하여 전기 에너지를 사용할 수 있는 연료전지 시스템에 사용될 수 있다. 음이온 교환막은 알칼라인 조건에서 수산화 이온(OH-) 전도를 기반으로 작동한다. 하지만, 음이온 교환막은 상대적으로 낮은 이온 전도도와 알칼라인 안정성을 보이기 때문에 아직 수전해 및 연료전지에 상용화되는 데 한계가 존재한다. 이를 해결하기 위해서는 고분자 구조를 합리적으로 설계하여 새로운 음이온 교환막 소재를 개발하는 것이 필수적이다. 특히, 고분자의 물성, 이온전도도, 그리고 알칼라인 안정성이 우수하게 유지될 수 있도록 고분자 구조 및 합성 방법 등을 제어하여 한다. 음이온 교환막 중에서 Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) 기반의 소재는 상용화 되어 접근이 용이하다. 또한, 다른 고분자에 비해 상대적으로 기계적인 특성 및 화학적 안정성이 높아 음이온 교환막 개발에 자주 사용되고 있다. 본 총설에서는 음이온 교환막에서 사용되는 PPO 기반의 고분자 소재 개발 전략 및 특성에 대해서 소개하고자 한다.

Keywords

Acknowledgement

이 논문은 전남대학교 학술연구비(과제번호: 2021-2257) 지원에 의하여 연구되었음. 또한, 이 논문은 2021년도 정부(산업통산자원부)의 재원으로 한국산업기술진흥원의 지원에 의해서 수행된 연구임(과제번호: P0012770, 2021년 산업혁신인재성장지원사업).

References

  1. M. Galizia, W. S. Chi, Z. P. Smith, T. C. Merkel, R. W. Baker, and B. D. Freeman, "50th Anniversary Perspective: Polymers and Mixed Matrix Membranes for Gas and Vapor Separation: A Review and Prospective Opportunities", Macromolecules, 50, 7809 (2017). https://doi.org/10.1021/acs.macromol.7b01718
  2. P. E. Brockway, A. Owen, L. I. Brand-Correa, and L. Hardt, "Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources", Nat. Energy, 4, 612 (2019). https://doi.org/10.1038/s41560-019-0425-z
  3. A. Hasanbeigi, L. Price, and E. Lin, "Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review", Renew. Sustain. Energy Rev., 16, 6220 (2012). https://doi.org/10.1016/j.rser.2012.07.019
  4. N. L. Panwar, S. C. Kaushik, and S. Kothari, "Role of renewable energy sources in environmental protection: A review", Renew. Sustain. Energy Rev., 15, 1513 (2011). https://doi.org/10.1016/j.rser.2010.11.037
  5. J. O. Abe, A. P. I. Popoola, E. Ajenifuja, and O. M. Popoola, "Hydrogen energy, economy and storage: Review and recommendation", Int. J. Hydrogen Energy, 44, 15072 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.068
  6. U. Eberle, M. Felderhoff, and F. Schuth, "Chemical and physical solutions for hydrogen storage", Angew. Chem. Int. Ed., 48, 6608 (2009). https://doi.org/10.1002/anie.200806293
  7. W. I. F. David, J. W. Makepeace, S. K. Callear, H. M. A. Hunter, J. D. Taylor, T. J. Wood, and M. O. Jones, "Hydrogen production from ammonia using sodium amide", J. Am. Chem. Soc., 136, 13082 (2014). https://doi.org/10.1021/ja5042836
  8. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, "A metal-free polymeric photocatalyst for hydrogen production from water under visible light", Nat. Mater., 8, 76 (2009). https://doi.org/10.1038/nmat2317
  9. I. Dincer and C. Acar, "Review and evaluation of hydrogen production methods for better sustainability", Int. J. Hydrogen Energy, 40, 11094 (2015). https://doi.org/10.1016/j.ijhydene.2014.12.035
  10. H. F. Abbas and W. M. A. Wan Daud, "Hydrogen production by methane decomposition: A review", Int. J. Hydrogen Energy, 35, 1160 (2010). https://doi.org/10.1016/j.ijhydene.2009.11.036
  11. H. A. Miller, K. Bouzek, J. Hnat, S. Loos, C. I. Bernacker, T. Weissgarber, L. Rontzsch, and J. Meier-Haack, "Green hydrogen from anion exchange membrane water electrolysis: A review of recent developments in critical materials and operating conditions", Sustain. Energy Fuels, 4, 2114 (2020). https://doi.org/10.1039/C9SE01240K
  12. K. Zeng and D. Zhang, "Recent progress in alkaline water electrolysis for hydrogen production and applications", Prog. Energy Combust. Sci., 36, 307 (2010). https://doi.org/10.1016/j.pecs.2009.11.002
  13. S. Noh, J. Y. Jeon, S. Adhikari, Y. S. Kim, and C. Bae, "Molecular Engineering of Hydroxide Conducting Polymers for Anion Exchange Membranes in Electrochemical Energy Conversion Technology", Acc. Chem. Res., 52, 2745 (2019). https://doi.org/10.1021/acs.accounts.9b00355
  14. K. S. Im, T. Y. Son, K. Kim, J. F. Kim, and S. Y. Nam, "Research and development trend of electrolyte membrane applicable to water electrolysis system", Appl. Chem. Eng., 30, 389 (2019). https://doi.org/10.14478/ACE.2019.1052
  15. M. Winter and R. J. Brodd, "What are batteries, fuel cells, and supercapacitors?", Chem. Rev., 104, 4245 (2004). https://doi.org/10.1021/cr020730k
  16. J. Peron, A. Mani, X. Zhao, D. Edwards, M. Adachi, T. Soboleva, Z. Shi, Z. Xie, T. Navessin, and S. Holdcroft, "Properties of Nafion® NR-211 membranes for PEMFCs", J. Membr. Sci., 356, 44 (2010). https://doi.org/10.1016/j.memsci.2010.03.025
  17. X. L. Gao, L. X. Sun, H. Y. Wu, Z. Y. Zhu, N. Xiao, J. H. Chen, Q. Yang, Q. G. Zhang, A. M. Zhu, and Q. L. Liu, "Highly conductive fluorine-based anion exchange membranes with robust alkaline durability", J. Mater. Chem. A, 8, 13065 (2020). https://doi.org/10.1039/d0ta04350h
  18. Z. Zhang, E. Chalkova, M. Fedkin, C. Wang, S. N. Lvov, S. Komarneni, and T. C. M. Chung, "Synthesis and characterization of poly(vinylidene fluoride)-g-sulfonated polystyrene graft copolymers for proton exchange membrane", Macromolecules, 41, 9130 (2008). https://doi.org/10.1021/ma801277m
  19. J. R. Varcoe, P. Atanassov, D. R. Dekel, A. M. Herring, M. A. Hickner, P. A. Kohl, A. R. Kucernak, W. E. Mustain, K. Nijmeijer, K. Scott, T. Xu, and L. Zhuang, "Anion-exchange membranes in electrochemical energy systems", Energy Environ. Sci., 7, 3135 (2014). https://doi.org/10.1039/C4EE01303D
  20. G. Merle, M. Wessling, and K. Nijmeijer, "Anion exchange membranes for alkaline fuel cells: A review", J. Membr. Sci., 377. 1 (2011). https://doi.org/10.1016/j.memsci.2011.04.043
  21. G. Couture, A. Alaaeddine, F. Boschet, and B. Ameduri, "Polymeric materials as anion-exchange membranes for alkaline fuel cells", Prog. Polym. Sci., 36, 1521 (2011). https://doi.org/10.1016/j.progpolymsci.2011.04.004
  22. J.-H. Kim, S. Ryu, and S.-H. Moon, "The Fabrication of Ion Exchange Membrane and Its Application to Energy Systems", Membr. J., 30, 79 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.2.79
  23. J. Song, B. Seo, and Y. Choi, "Structural Studies in Anion Exchange Membrane Prepared by Vinyl Benzyl Chloride and its Electrochemical Properties", Membr. J., 25, 310 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.4.310
  24. N. Ramaswamy and S. Mukerjee, "Alkaline Anion-Exchange Membrane Fuel Cells: Challenges in Electrocatalysis and Interfacial Charge Transfer", Chem. Rev., 119. 11945 (2019). https://doi.org/10.1021/acs.chemrev.9b00157
  25. P. Atkins and P. J. De, "Physical Chemistry", 7th Edition, Oxford Univ. Press (2002).
  26. H. S. Dang and P. Jannasch, "High-Performing Hydroxide Exchange Membranes with Flexible Tetra-Piperidinium Side Chains Linked by Alkyl Spacers", ACS Appl. Energy Mater., 1, 2222 (2018). https://doi.org/10.1021/acsaem.8b00294
  27. R. A. Becerra-Arciniegas, R. Narducci, G. Ercolani, S. Antonaroli, E. Sgreccia, L. Pasquini, P. Knauth, and M. L. Di Vona, "Alkaline stability of model anion exchange membranes based on poly(phenylene oxide) (PPO) with grafted quaternary ammonium groups: Influence of the functionalization route", Polymer, 185, 121931 (2019). https://doi.org/10.1016/j.polymer.2019.121931
  28. J. S. Olsson, T. H. Pham, and P. Jannasch, "Functionalizing Polystyrene with N-Alicyclic PiperidineBased Cations via Friedel-Crafts Alkylation for Highly Alkali-Stable Anion-Exchange Membranes", Macromolecules, 53, 4722 (2020). https://doi.org/10.1021/acs.macromol.0c00201
  29. J. Ran, L. Wu, Y. Ru, M. Hu, L. Din, and T. Xu, "Anion exchange membranes (AEMs) based on poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and its derivatives", Polym. Chem., 6, 5809 (2015). https://doi.org/10.1039/C4PY01671H
  30. J. Ran, L. Wu, B. Wei, Y. Chen, and T. Xu, "Simultaneous Enhancements of Conductivity and Stability for Anion Exchange Membranes (AEMs) through Precise Structure Design", Sci. Rep., 4 (2014). https://doi.org/10.1038/srep04694
  31. G. Yang, J. Hao, J. Cheng, N. Zhang, G. He, F. Zhang, and C. Hao, "Hydroxide ion transfer in anion exchange membrane: A density functional theory study", Int. J. Hydrogen Energy, 41, 6877 (2016). https://doi.org/10.1016/j.ijhydene.2016.03.067
  32. M. Mandal, "Recent Advancement on Anion Exchange Membranes for Fuel Cell and Water Electrolysis", ChemElectroChem, 8. 36 (2021). https://doi.org/10.1002/celc.202001329
  33. N. Li, T. Yan, Z. Li, T. Thurn-Albrecht, and W. H. Binder, "Comb-shaped polymers to enhance hydroxide transport in anion exchange membranes", Energy Environ. Sci., 5, 7888 (2012). https://doi.org/10.1039/c2ee22050d
  34. M. I. Khan, X. Li, J. Fernandez-Garcia, M. H. Lashari, A. Ur Rehman, N. Elboughdiri, L. Kolsi, and D. Ghernaout, "Effect of Different Quaternary Ammonium Groups on the Hydroxide Conductivity and Stability of Anion Exchange Membranes", ACS Omega, 6, 7994 (2021). https://doi.org/10.1021/acsomega.0c05134
  35. Y. Yang, Y. Xu, N. Ye, D. Zhang, J. Yang, and R. He, "Alkali Resistant Anion Exchange Membranes Based on Saturated Heterocyclic Quaternary Ammonium Cations Functionalized Poly(2,6-dimethyl-1,4-phenylene oxide)s", J. Electrochem. Soc., 165, F350 (2018). https://doi.org/10.1149/2.1031805jes
  36. J. Xue, X. Liu, J. Zhang, Y. Yin, and M. D. Guiver, "Poly(phenylene oxide)s incorporating N-spirocyclic quaternary ammonium cation/cation strings for anion exchange membranes", J. Membr. Sci., 595, 117507 (2020). https://doi.org/10.1016/j.memsci.2019.117507
  37. M. G. Marino, and K. D. Kreuer, "Alkaline Stability of Quaternary Ammonium Cations for Alkaline Fuel Cell Membranes and Ionic Liquids", ChemsusChem, 8, 513 (2015). https://doi.org/10.1002/cssc.201403022
  38. J. Pan, J. Han, L. Zhu, and M. A. Hickner, "Cationic Side-Chain Attachment to Poly(Phenylene Oxide) Backbones for Chemically Stable and Conductive Anion Exchange Membranes", Chem. Mater., 29, 5321 (2017). https://doi.org/10.1021/acs.chemmater.7b01494
  39. H. S. Dang and P. Jannasch, "A comparative study of anion-exchange membranes tethered with different hetero-cycloaliphatic quaternary ammonium hydroxides", J. Mater. Chem. A, 5, 21965 (2017). https://doi.org/10.1039/C7TA06029G
  40. S. He, L. Liu, X. Wang, S. Zhang, M. D. Guiver, and N. Li, "Azide-assisted self-crosslinking of highly ion conductive anion exchange membranes", J. Membr. Sci., 509, 48 (2016). https://doi.org/10.1016/j.memsci.2016.02.045
  41. N. Chen, C. Long, Y. Li, C. Lu, and H. Zhu, "Ultrastable and High Ion-Conducting Polyelectrolyte Based on Six-Membered N-Spirocyclic Ammonium for Hydroxide Exchange Membrane Fuel Cell Applications", ACS Appl. Mater. Interfaces, 10, 15720 (2018). https://doi.org/10.1021/acsami.8b02884
  42. X. Chu, Y. Shi, L. Liu, Y. Huang, and N. Li, "Piperidinium-functionalized anion exchange membranes and their application in alkaline fuel cells and water electrolysis", J. Mater. Chem. A, 7, 7717 (2019). https://doi.org/10.1039/c9ta01167f
  43. X. Chu, L. Liu, Y. Huang, M. D. Guiver, and N. Li, "Practical implementation of bis-six-membered N-cyclic quaternary ammonium cations in advanced anion exchange membranes for fuel cells: Synthesis and durability", J. Membr. Sci., 578, 239 (2019). https://doi.org/10.1016/j.memsci.2019.02.051
  44. J. Ran, L. Wu, and T. Xu, "Enhancement of hydroxide conduction by self-assembly in anion conductive comb-shaped copolymers", Polym. Chem., 4, 4612 (2013). https://doi.org/10.1039/c3py00421j
  45. J. Ran, L. Wu, Q. Ge, Y. Chen, and T. Xu, "High performance anion exchange membranes obtained through graft architecture and rational cross-linking", J. Membr. Sci., 470, 229 (2014). https://doi.org/10.1016/j.memsci.2014.07.036
  46. X. Cheng, J. Wang, Y. Liao, C. Li, and Z. Wei, "Enhanced Conductivity of Anion-Exchange Membrane by Incorporation of Quaternized Cellulose Nanocrystal", ACS Appl. Mater. Interfaces, 10, 23774 (2018). https://doi.org/10.1021/acsami.8b05298
  47. H. Long, K. Kim, and B. S. Pivovar, "Hydroxide degradation pathways for substituted trimethylammonium cations: A DFT study", J. Phys. Chem. C, 116, 9419 (2012). https://doi.org/10.1021/jp3014964
  48. S. Chempath, J. M. Boncella, L. R. Pratt, N. Henson, and B. S. Pivovar, "Density functional theory study of degradation of tetraalkylammonium hydroxides", J. Phys. Chem. C, 114, 11977 (2010). https://doi.org/10.1021/jp9122198
  49. N. Li, M. D. Guiver, and W. H. Binder, "Towards high conductivity in anion-exchange membranes for alkaline fuel cells", ChemSusChem, 6, 1376 (2013). https://doi.org/10.1002/cssc.201300320
  50. T. Y. Son, T. H. Kim, H. J. Kim, and S. Y. Nam, "Problems and solutions of anion exchange membranes for anion exchange membrane fuel cell (AEMFC)", Appl. Chem. Eng., 29, 489 (2018). https://doi.org/10.14478/ACE.2018.1074
  51. H. J. Mun, J. H. Choi, Y. T. Hong, and B. J. Chang, "The Preparation and Electrochemical Properties of Pore-filled and Polystyrene-based Anion-exchange Membranes Using Poly(ethylene glycol)methyl Ether Methacrylate", Membr. J., 25, 515 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.6.515