DOI QR코드

DOI QR Code

Nanostructured PVdF-HFP/TiO2 Composite as Protective Layer on Lithium Metal Battery Anode with Enhanced Electrochemical Performance

PVdF-HFP/TiO2 나노복합체 보호층을 통한 리튬금속전지 음극의 전기화학적 성능 향상

  • Lee, Sanghyun (Department of Chemical Engineering, Kwangwoon University) ;
  • Choi, Sang-Seok (Department of Chemical Engineering, Kwangwoon University) ;
  • Kim, Dong-Eun (Department of Chemical Engineering, Kwangwoon University) ;
  • Hyun, Jun-Heock (Department of Chemical Engineering, Kwangwoon University) ;
  • Park, Young-Wook (Department of Chemical Engineering, Kwangwoon University) ;
  • Yu, Jin-Seong (Department of Chemical Engineering, Kwangwoon University) ;
  • Jeon, So-Yoon (Department of Chemical Engineering, Kwangwoon University) ;
  • Park, Joongwon (Department of Chemical Engineering, Kwangwoon University) ;
  • Shin, Weon Ho (Department of Chemical Engineering, Kwangwoon University) ;
  • Sohn, Hiesang (Department of Chemical Engineering, Kwangwoon University)
  • 이상현 (광운대학교 화학공학과) ;
  • 최상석 (광운대학교 화학공학과) ;
  • 김동언 (광운대학교 화학공학과) ;
  • 현준혁 (광운대학교 화학공학과) ;
  • 박용욱 (광운대학교 화학공학과) ;
  • 유진성 (광운대학교 화학공학과) ;
  • 전소윤 (광운대학교 화학공학과) ;
  • 박중원 (광운대학교 화학공학과) ;
  • 신원호 (광운대학교 화학공학과) ;
  • 손희상 (광운대학교 화학공학과)
  • Received : 2021.11.29
  • Accepted : 2021.12.02
  • Published : 2021.12.31

Abstract

As the demand for high-capacity batteries increases, there has been growing researches on the lithium metal anode with a capacity (3,860 mAh/g) of higher than that of conventional one and a low electrochemical potential (-3.040 V). In this study, using the anatase phased TiO2 nanoparticles synthesized by hydrothermal synthesis, a PVdF-HFP/TiO2 organic/inorganic composite material was designed and used as an interfacial protective layer for a Li metal anode. As-formed organic/inorganic-lithium composite thin film was confirmed through the crystalline structure and morphological analyses. In addition, the electrochemical test (cycle stability and voltage profile) confirmed that the protective layer of PVdF-HFP/TiO2 composite (10 wt% TiO2 and 1.1 ㎛ film thickness) contributed to the enhanced electrochemical performance of the lithium metal anode (Colombic efficiency retention: 90% for 77 cycles). Based on comparative test with the untreated lithium electrode, it was confirmed that our protective layer plays an important role to stabilize/improve the EC performance of the lithium metal negative electrode.

고용량 배터리에 대한 요구가 증가에 따라 기존 음극재보다 높은 용량(3,860 mAh/g)과 낮은 전기화학적 전위(-3.040 V)를 갖는 리튬 금속 기반 음극재에 대한 연구가 활발하게 이루어지고 있다. 본 연구에서는 수열 합성을 통해 제작된 아나타제(anatase) 타입의 TiO2 나노 입자 기반한 PVdF-HFP/TiO2 복합체를 리튬 금속 음극의 계면 보호층으로 적용하였다. 결정구조 및 형상 분석을 통해 유/무기-리튬 나노복합체 박막의 형성을 확인하였다. 또한, 전지화학 테스트(사이클 테스트 및 전압 프로파일)를 통해 리튬 금속 음극의 전기화학 성능 은 복합체 보호막이 TiO2 10 wt%, 코팅 두께 1.1 ㎛의 조건에서 가장 개선된 전기화학적 성능(콜롱 효율 유지: 77 사이클 동안 90% 이상) 발현을 확인하였다. 이를 통해, 처리하지 않은 리튬 전극 대비 본 보호층에 의한 리튬 금속 음극의 성능 안정화/개선 효과가 검증되었다.

Keywords

Acknowledgement

The present research has been conducted by the Research Grant of Kwangwoon University in 2020. This research was supported by the Nano-Material Technology Development Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT and Future Planning (2009-0082580). It was also supported by an NRF grant funded by the Korean government (MSIT) (No. NRF-2020R1F1A1065536) and by Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0012451, The Competency Development Program for Industy Specialist).

References

  1. B. A. Korgel, "Nanomaterials developments for higher-performance lithium ion batteries", J. Phys. Chem. Lett., 5, 749 (2014). https://doi.org/10.1021/jz5002242
  2. L. Yue, J. Ma, J. Zhang, J. Zhao, S. Dong, Z. Liu, G. Cui, and L. Chen, "All solid-state polymer electrolytes for high-performance lithium ion batteries", Energy Storage Mater., 5, 139 (2016). https://doi.org/10.1016/j.ensm.2016.07.003
  3. A. Eftekhari, "Lithium batteries for electric vehicles: From economy to research strategy", ACS Sustain. Chem. Eng., 7, 5602 (2019). https://doi.org/10.1021/acssuschemeng.8b01494
  4. D. Seok, Y. Jeong, K. Han, D. Y. Yoon, and H. Sohn, "Recent progress of electrochemical energy devices: Metal oxide-carbon nanocomposites as materials for next-generation chemical storage for renewable energy", Sustainability, 11, 3694 (2019). https://doi.org/10.3390/su11133694
  5. H. Jung, M. Park, Y.-G. Yoon, G.-B. Kim, and S.-K. Joo, "Amorphous silicon anode for lithiumion rechargeable batteries", J. Power Sources, 115, 346 (2003). https://doi.org/10.1016/S0378-7753(02)00707-3
  6. J. Xiao, W. Xu, D. Wang, D. Choi, W. Wang, X. Li, G. L. Graff, J. Liu, and J.-G. Zhang, "Stabilization of silicon anode for Li-ion batteries", J. Electrochem. Soc., 157, A1047 (2010). https://doi.org/10.1149/1.3464767
  7. G. Huang, J. Han, Z. Lu, D. Wei, H. Kashani, K. Watanabe, and M. Chen, "Ultrastable silicon anode by three-dimensional nanoarchitecture design", ACS Nano, 14, 4374 (2020). https://doi.org/10.1021/acsnano.9b09928
  8. K. Hwang, N. Kim, Y. Jeong, H. Sohn, and S. Yoo, "Controlled nanostructure of a graphene nano-sheet-TiO2 composite fabricated via mediation of organic ligands for high-performance Li storage applications", Int. J. Energy Res., 45, 16189 (2021). https://doi.org/10.1002/er.6852
  9. D. Seok, W. H. Shin, S. W. Kang, and H. Sohn, "Piezoelectric composite of BaTiO3-coated SnO2 microsphere: Li-ion battery anode with enhanced electrochemical performance based on accelerated Li+ mobility", J. Alloys Compd., 870, 159267 (2021). https://doi.org/10.1016/j.jallcom.2021.159267
  10. H. Ota, K. Shima, M. Ue, and J.-i. Yamaki, "Effect of vinylene carbonate as additive to electrolyte for lithium metal anode", Electrochim. Acta, 49, 565 (2004). https://doi.org/10.1016/j.electacta.2003.09.010
  11. F. Dai, R. Yi, H. Yang, Y. Zhao, L. Luo, M. L. Gordin, H. Sohn, S. Chen, C. Wang, S. Zhang, and D. Wang, "Minimized volume expansion in hierarchical porous silicon upon lithiation", ACS Appl. Mater. Interfaces, 11, 13257 (2019). https://doi.org/10.1021/acsami.9b01501
  12. K. Hwang, H. Sohn, and S. Yoon, "Mesostructured niobium-doped titanium oxide-carbon (Nb-TiO2-C) composite as an anode for high-performance lithium-ion batteries", J. Power Sources, 378, 225 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.055
  13. H. Sohn, D. H. Kim, R. Yi, D. Tang, S.-E. Lee, Y. S. Jung, and D. Wang, "Semimicro-size agglomerate structured silicon-carbon composite as an anode material for high performance lithium-ion batteries", J. Power Sources, 334, 128 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.096
  14. H. Sohn, Z. Chen, Y. S. Jung, Q. Xiao, M. Cai, H. Wang, and Y. Lu, "Robust lithium-ion anodes based on nanocomposites of iron oxide-carbon-silicate", J. Mater. Chem. A, 1, 4539 (2013). https://doi.org/10.1039/c2ta00443g
  15. Y. Jeong, J. Park, S. Lee, S. H. Oh, W. J. Kim, Y. J. Ji, G. Y. Park, D. Seok, W. H. Shin, J.-M. Oh, T. Lee, C. Park, A. Seubsai, and H. Sohn, "Iron oxide-carbon nanocomposites modified by organic ligands: Novel pore structure design of anode materials for lithium-ion batteries", J. Elec. Anal. Chem., 904, 115905 (2022).
  16. B. Liu, J.-G. Zhang, and W. Xu, "Advancing lithium metal batteries", Joule, 2, 833 (2018). https://doi.org/10.1016/j.joule.2018.03.008
  17. S. Park, H.-J. Jin, and Y. S. Yun, "Advances in the design of 3D-structured electrode materials for lithium-metal anodes", Adv. Mater., 32, 2002193 (2020). https://doi.org/10.1002/adma.202002193
  18. H. Sohn, "Deposition of functional organic and inorganic layer on the cathode for the improved electrochemical performance of Li-S battery", Korean Chem. Eng. Res., 55, 483 (2017). https://doi.org/10.9713/KCER.2017.55.4.483
  19. H. Sohn, M. L. Gordin, M. Regula, D. H. Kim, Y. S. Jung, J. Song, and D. Wang, "Porous spherical polyacryonitrile-carbon nanocomposite with high loading of sulfur for lithium-sulfur batteries", J. Power Sources, 302, 70 (2016). https://doi.org/10.1016/j.jpowsour.2015.10.013
  20. F. Ding, W. Xu, G. L. Graff, J. Zhang, M. L. Sushko, X. Chen, Y. Shao, M. H. Engelhard, Z. Nie, J. Xiao, X. Liu, P. V. Sushko, J. Liu, and J.-G. Zhang, "Dendrite-free lithium deposition via self-healing electrostatic shield mechanism", J. Am. Chem. Soc., 135, 4450 (2013). https://doi.org/10.1021/ja312241y
  21. J. Z. Hu, Z. Zhao, M. Y. Hu, J. Feng, X. Deng, X. Chen, W.Xu, J. Liu, and J.-G. Zhang, "In situ 7 Li and 133Cs nuclear magnetic resonance investigations on the role of Cs+ additive in lithium-metal deposition process", J. Power Sources, 304, 51 (2016). https://doi.org/10.1016/j.jpowsour.2015.10.067
  22. C. Yan, X.-B. Cheng, Y. Tian, X. Chen, X.-Q. Zhang, W.-J. Li, J.-Q. Huang, and Q. Zhang, "Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition", Adv. Mater., 30, 1707629 (2018). https://doi.org/10.1002/adma.201707629
  23. H. Liu, H. Zhou, B.-S. Lee, X. Xing, M. Gonzalez, and P. Liu, "Suppressing lithium dendrite growth with a single-component coating", ACS Appl. Mater. Interfaces, 9, 30635 (2017). https://doi.org/10.1021/acsami.7b08198
  24. G. Yang, J. Chen, P. Xiao, P. O. Agboola, I. Shakir, and Y. Xu, "Graphene anchored on Cu foam as a lithiophilic 3D current collector for a stable and dendrite-free lithium metal anode", J. Mater. Chem. A, 6, 9899 (2018). https://doi.org/10.1039/C8TA02810A
  25. Y. Cheng, X. Ke, Y. Chen, X. Huang, Z. Shi, and Z. Guob, "Lithiophobic-lithiophilic composite architecture through co-deposition technology toward high-performance lithium metal batteries", Nano Energy, 63, 103854 (2019). https://doi.org/10.1016/j.nanoen.2019.103854
  26. H. Liu, X. Wang, H. Zhou, H.-D. Lim, X. Xing, Q. Yan, Y. S. Meng, and P. Liu, "Structure and solution dynamics of lithium methyl carbonate as a protective layer for lithium metal", ACS Appl. Energy Mater., 1, 1864 (2018). https://doi.org/10.1021/acsaem.8b00348
  27. Y. Zhong, Y. Chen, Y. Cheng, Q. Fan, H. Zhao, H. Shao, Y. Lai, Z. Shi, X. Ke, and Z. Guo, "Li alginate-based artificial SEI layer for stable lithium metal anodes", ACS Appl. Mater. Interfaces, 11, 37726 (2019). https://doi.org/10.1021/acsami.9b12634
  28. S. Lee, D. Seok, Y. jeong, and H. Sohn, "Surface modification of Li metal electrode with PDMS/GO composite thin film: Controlled growth of Li layer and improved performance of lithium metal battery (LMB)", Membr. J., 30, 38 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.1.38
  29. W. Liu, W. Li, D. Zhuo, G. Zheng, Z. Lu, K. Liu, and Y. Cui, "Core-shell nanoparticle coating as an interfacial layer for dendrite-free lithium metal anodes", ACS Cent. Sci., 3, 135 (2017). https://doi.org/10.1021/acscentsci.6b00389
  30. Z. Wen, Y. Peng, J. Cong, H. Hua, Y. Lin, J. Xiong, J. Zeng, and J. Zhao, "A stable artificial protective layer for high capacity dendrite-free lithium metal anode", Nano Res. 12, 2535 (2019). https://doi.org/10.1007/s12274-019-2481-x
  31. H. Xie, Z. Tang, Z. Li, Y. He, Y. Liu, and H. Wang, "PVDF-HFP composite polymer electrolyte with excellent electrochemical properties for Li-ion batteries", J. Solid State Electrochem., 12, 1497 (2008). https://doi.org/10.1007/s10008-008-0511-9
  32. A. M. Stephan, K. S. Nahm, M. A. Kulandainathan, G. Ravi, and J. Wilson, "Poly (vinylidene fluoridehexafluoropropylene)(PVdF-HFP) based composite electrolytes for lithium batteries", Eur. Polym. J., 42, 1728 (2006). https://doi.org/10.1016/j.eurpolymj.2006.02.006
  33. B. Zhu, Y. Jin, X. Hu, Q. Zheng, S. Zhang, Q. Wang, and J. Zhu, "Poly (dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes", Adv. Mater., 29, 1603755 (2017). https://doi.org/10.1002/adma.201603755
  34. Y. Nan, S. Li, B. Li, and S. Yang, "An artificial TiO2/lithium n-butoxide hybrid SEI layer with facilitated lithium-ion transportation ability for stable lithium anodes", Nanoscale, 11, 2194 (2019). https://doi.org/10.1039/C8NR08060G
  35. X. Lu, P. Hao, G. Xie, J. Duan, L. Gao, and B. Liu, "A sensor array realized by a single flexible TiO2/POMs film to contactless detection of triacetone triperoxide", Sensors, 19, 915 (2019). https://doi.org/10.3390/s19040915
  36. M. Xie, L. Jing, J. Zhou, J. Lin, and H. Fu, "Synthesis of nanocrystalline anatase TiO2 by one-pot two-phase separated hydrolysis-solvothermal processes and its high activity for photocatalytic degradation of rhodamine B", J. Hazard. Mater., 176, 139 (2010). https://doi.org/10.1016/j.jhazmat.2009.11.008
  37. K. Hwang, N. Kim, Y. Jeong, H. Sohn, and S. Yoon, "Controlled nanostructure of a graphene nanosheet-TiO2 composite fabricated via mediation of organic ligands for high-performance Li storage applications", Int. J. Energy Res., 45, 16189 (2021). https://doi.org/10.1002/er.6852
  38. H. Sohn, D. Kim, J. Lee, and S. Yoon, "Facile synthesis of a mesostructured TiO2-graphitized carbon (TiO2-gC) composite through the hydrothermal process and its application as the anode of lithium ion batteries", RSC Adv., 6, 39484 (2016). https://doi.org/10.1039/C6RA01614F
  39. Singh, V. Kumar, and R. K. Singh., "Development of ion conducting polymer gel electrolyte membranes based on polymer PVdF-HFP, BMIMTFSI ionic liquid and the Li-salt with improved electrical, thermal and structural properties", J. Mater. Chem. C, 3, 7305 (2015). https://doi.org/10.1039/C5TC00940E
  40. M. Wang, X. Cheng, T. Cao, J. Niu, R. Wu, X. Liu, Y. Zhang, "Constructing ultrathin TiO2 protection layers via atomic layer deposition for stable lithium metal anode cycling", J. Alloys Compd., 865, 158748 (2021). https://doi.org/10.1016/j.jallcom.2021.158748
  41. R. Zhang, X.-R. Chen, X. Chen, X.-B. Cheng, X.-Q. Zhang, C. Yan, and Q. Zhang, "Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes", Angew. Chem., Int. Ed., 129, 7872 (2017). https://doi.org/10.1002/ange.201702099
  42. L. Pan, Z. Luo, Y. Zhang, W. Chen, Z. Zhao, Y. Li, J. Wan, D. Yu, H. He, and D. Wang, "Seed-free selective deposition of lithium metal into tough graphene framework for stable lithium metal anode", ACS Appl. Mater. Interfaces, 11, 44383 (2019). https://doi.org/10.1021/acsami.9b17108
  43. R. Xu, X.-Q. Zhang, X.-B. Cheng, H.-J. Peng, C.-Z. Zhao, C. Yan, and J.-Q. Huang, "Artificial soft-rigid protective layer for dendrite-free lithium metal anode", Adv. Funct. Mater., 28, 1705838 (2018). https://doi.org/10.1002/adfm.201705838