DOI QR코드

DOI QR Code

Preparation of Polyketone Micro/nanofiber Membrane based on Electrospinning Condition and Its Application in Oil-Water Separation

전기방사법의 제조 조건에 따른 폴리케톤 마이크로/나노섬유 분리막 제조 및 유수 분리 적용

  • Hou, Jian (Department of Chemical Engineering, Keimyung University) ;
  • Yun, Jaehan (Department of Chemical Engineering, Keimyung University) ;
  • Park, Chanju (Department of Chemical Engineering, Keimyung University) ;
  • Choi, Jinwon (Department of Chemical Engineering, Keimyung University) ;
  • Jeon, Sungil (Membrare Co. Ltd.) ;
  • Lee, Chang Hyun (Department of Energy Engineering, Dankook University) ;
  • Byun, Hongsik (Department of Chemical Engineering, Keimyung University)
  • 후건 (계명대학교 화학공학과) ;
  • 윤재한 (계명대학교 화학공학과) ;
  • 박찬주 (계명대학교 화학공학과) ;
  • 최진원 (계명대학교 화학공학과) ;
  • 전성일 (주식회사 멤브레어) ;
  • 이창현 (단국대학교 에너지공학과) ;
  • 변홍식 (계명대학교 화학공학과)
  • Received : 2021.11.15
  • Accepted : 2021.12.08
  • Published : 2021.12.31

Abstract

In this study, a novel material polyketone (PK) was chosen and PK micro/nano fiber membranes were fabricated via electrospinning method under various conditions. After that, the potential application in oil-water separation was thoroughly investigated. The surface of microfiber membrane formed under high humidity especially became much rougher than that formed under low humidity. When salt was added to the spinning solution, the diameter of fibers was reduced up to 90% and the nanofiber membranes could be formed. The oil/water emulsions were prepared and separated under gravity condition using the manufactured rPK-LNC and PK-H membranes. The separation characteristics was evaluated by measuring total organic carbon (TOC) and turbidity. Meanwhile, the changes in the physical properties of fiber membranes under various conditions and with or without salt, as well as the changes in oil water separation characteristics were also studied.

본 연구에서는 polyketone (PK)을 이용하여 전기방사 조건에 따른 섬유 형상의 특성 변화와 유수분리 가능성을 확인해 보았다. 고습과 저습 조건에서는 마이크론 직경의 섬유가 형성되었으며, 특히 고습에서는 섬유의 표면이 거칠게 변한 것이 확인되었다. 섬유 직경을 micro에서 nano로 변경하기 위하여 방사용액에 염을 추가하였으며, 그 결과 섬유 직경이 약 90% 감소하는 것을 확인할 수 있었다. 제조된 rPK-LNC와 PK-H로 유수분리 특성을 확인하기 위해 oil/water 에멀션으로 중력 조건에서 유수분리를 진행하였으며 total organic carbon (TOC)와 탁도를 측정하여 특성을 분석하였다. 제거율 확인결과 탁도가 TOC와 동일한 경향성을 나타내는 것이 확인되었다. 따라서 본 연구에서는 고분자의 방사조건과 염의 유무에 따른 분리막의 섬유 형상과 물리적 특성변화와 이를 이용한 유수분리 특성에 대해 연구하였다.

Keywords

Acknowledgement

이 연구는 2020년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(20012133 / 1415173356). 또한 (주) 멤브레어의 과제 지원에 감사드립니다.

References

  1. C. H. Peterson, S. D. Rice, J. W. Short, D. Esler, J. L. Bodkin, B. E. Ballachey, and D. B. Irons, "Long-Term Ecosystem Response to the Exxon Valdez Oil Spill", Science, 302, 2082-2086 (2003). https://doi.org/10.1126/science.1084282
  2. R. P. Schwarzenbach, T. Egli, T. B. Hofstetter, U. Von Gunten, and B. Wehrli, "Global water pollution and human health", Annu. Rev. Environ. Resour., 35, 109-136 (2010). https://doi.org/10.1146/annurev-environ-100809-125342
  3. M. Cheryan and N. Rajagopalan, "Membrane processing of oily streams. Wastewater treatment and waste reduction", J. Membr. Sci., 151, 13-28 (1998). https://doi.org/10.1016/S0376-7388(98)00190-2
  4. P. H. H. Duong and T. S. Chung, "Application of thin film composite membranes with forward osmosis technology for the separation of emulsified oil-water", J. Membr. Sci., 452, 117-126 (2014). https://doi.org/10.1016/j.memsci.2013.10.030
  5. A. K. Kota, G. Kwon, W. Choi, J. M. Mabry, A. Tuteja, "Hygro-responsive membranes for effective oilg-water separation", Nat. Commun., 3, 1025 (2012). https://doi.org/10.1038/ncomms2027
  6. Z. Shi, W. Zhang, F. Zhang, X. Liu, D. Wang, J. Jin, and L. Jiang, "Ultrafast separation of emulsified oil/water mixtures by ultrathin free-standing single-walled carbon nanotube network films", Adv. Mater., 25, 2422-2427 (2013). https://doi.org/10.1002/adma.201204873
  7. Y. Dou, D. Tian, Z. Sun, Q. Liu, N. Zhang, J. H. Kim, L. Jiang, and S. X. Dou, "Fish Gill Inspired Crossflow for Efficient and Continuous Collection of Spilled Oil", ACS Nano., 11, 2477-2485 (2017). https://doi.org/10.1021/acsnano.6b07918
  8. S. Jamaly, A. Giwa, and S. W. Hasan, "Recent improvements in oily wastewater treatment: Progress, challenges, and future opportunities", J. Environ. Sci., 37, 15-30 (2015). https://doi.org/10.1016/j.jes.2015.04.011
  9. L. Yu, M. Han, and F. He, "A review of treating oily wastewater", Arab. J. Chem., 10, S1913-S1922 (2017). https://doi.org/10.1016/j.arabjc.2013.07.020
  10. A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, and G. H. McKinley, "R. E. Cohen, Designing superoleophobic surfaces", Science, 318, 1618-1622 (2007). https://doi.org/10.1126/science.1148326
  11. X. Zhang, F. Shi, J. Niu, Y. Jiang, and Z. Wang, "Superhydrophobic surfaces: From structural control to functional application", J. Mater. Chem., 18, 621-633 (2008). https://doi.org/10.1039/b711226b
  12. W. Ma, Q. Zhang, D. Hua, R. Xiong, J. Zhao, W. Rao, S. Huang, X. Zhan, F. Chen, and C. Huang, "Electrospun fibers for oil-water separation", RSC Adv., 6, 12868-12884 (2016). https://doi.org/10.1039/C5RA27309A
  13. Y. Peng and Z. Guo, "Recent advances in bio-mimetic thin membranes applied in emulsified oil/water separation", J. Mater. Chem. A., 4, 15749-15770 (2016). https://doi.org/10.1039/C6TA06922C
  14. J. Ge, D. Zong, Q. Jin, J. Yu, and B. Ding, "Biomimetic and Superwettable Nanofibrous Skins for Highly Efficient Separation of Oil-in-Water Emulsions", Adv. Funct. Mater., 28, 1-10 (2018).
  15. B. Lee and R. Patel, "Review on Oil/Water Separation Membrane Technology", Membr. J., 30, 359-372 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.6.359
  16. O. Ohsawa, K. H. Lee, B. S. Kim, S. Lee, and I. S. Kim, "Preparation and characterization of polyketone (PK) fibrous membrane via electrospinning", Polymer, 51, 2007-2012 (2010). https://doi.org/10.1016/j.polymer.2010.02.045
  17. J. M. Lagaron, A. K. Powell, and N. S. Davidson, "Characterization of the structure and crystalline polymorphism present in aliphatic polyketones by Raman spectroscopy", Macromolecules., 33, 1030-1035 (2000). https://doi.org/10.1021/ma990302p
  18. C. Wu, Y. Otani, N. Namiki, H. Emi, K. H. Nitta, and S. Kubota, "Development of high-strength fibers from aliphatic polyketones by melt spinning and drawing", J. Appl. Polym. Sci., 82, 1794-1815 (2001). https://doi.org/10.1002/app.2022
  19. L. Cheng, A. R. Shaikh, L. F. Fang, S. Jeon, C. J. Liu, L. Zhang, H. C. Wu, D. M. Wang, and H. Matsuyama, "Dual Superlyophobic Aliphatic Polyketone Membranes for Highly Efficient Emulsified Oil-Water Separation: Performance and Mechanism", ACS Appl. Mater. Interfaces., 10, 7586-7594 (2018).
  20. L. Zhang, L. Cheng, H. Wu, T. Yoshioka, and H. Matsuyama, "One-step fabrication of robust and anti-oil-fouling aliphatic polyketone composite membranes for sustainable and efficient filtration of oil-in-water emulsions", J. Mater. Chem. A., 6, 24641-24650 (2018). https://doi.org/10.1039/C8TA10071C
  21. C. Liu, R. Takagi, T. Shintani, L. Cheng, K. L. Tung, and H. Matsuyama, "Organic Liquid Mixture Separation Using an Aliphatic Polyketone-Supported Polyamide Organic Solvent Reverse Osmosis (OSRO) Membrane", ACS Appl. Mater. Interfaces., 12, 7586-7594 (2020). https://doi.org/10.1021/acsami.9b21519
  22. M. Mulder and J. Mulder, "Basic principles of membrane technology", Springer Science & Business Media (1996).
  23. S. Jeon, H. Karkhanechi, L. F. Fang, L. Cheng, T. Ono, R. Nakamura, and H. Matsuyama, "Novel preparation and fundamental characterization of polyamide 6 self-supporting hollow fiber membranes via thermally induced phase separation (TIPS)", J. Membr. Sci., 546, 1-14 (2018). https://doi.org/10.1016/j.memsci.2017.10.008
  24. J. Hou, J. Yun, and H. Byun, "Fabrication and Characterization of Modified Graphene Oxide/PAN Hybrid Nanofiber Membrane", Membranes., 9, 122 (2019). https://doi.org/10.3390/membranes9090122
  25. R. S. Barhate, C. K. Loong, and S. Ramakrishna, "Preparation and characterization of nanofibrous filtering media", J. Memb. Sci., 283, 209-218 (2006). https://doi.org/10.1016/j.memsci.2006.06.030
  26. J. Lin, F. Tian, Y. Shang, F. Wang, B. Ding, and J. Yu, "Facile control of intra-fiber porosity and inter-fiber voids in electrospun fibers for selective adsorption", Nanoscale., 4, 5316-5320 (2012). https://doi.org/10.1039/c2nr31515g
  27. W. Jang, J. Hou, H. Byun, and J. Y. Lee, "Preparation of PVdF/Fe3O4-GO (MGO) Composite Membrane by Using Electrospinning Technology and its Arsenic Removal Characteristics", Membr. J., 26, 480-489 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.6.480
  28. L. Cheng, A. R. Shaikh, L. F. Fang, S. Jeon, C. J. Liu, L. Zhang, H. C. Wu, D. M. Wang, and H. Matsuyama, "Fouling-Resistant and Self-Cleaning Aliphatic Polyketone Membrane for Sustainable Oil-Water Emulsion Separation", ACS Appl. Mater. Interfaces., 10, 44880-44889 (2018). https://doi.org/10.1021/acsami.8b17192
  29. W. Zhang, Z. Shi, F. Zhang, X. Liu, J. Jin, and L. Jiang, "Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux", Adv. Mater., 25, 2071-2076 (2013). https://doi.org/10.1002/adma.201204520
  30. J. Wu, Y. Ding, J. Wang, T. Li, H. Lin, J. Wang, and F. Liu, "Facile fabrication of nanofiber-and micro/nanosphere-coordinated PVDF membrane with ultrahigh permeability of viscous water-in-oil emulsions", J. Mater. Chem. A. 6, 7014-7020 (2018). https://doi.org/10.1039/C8TA01539B
  31. J. Hou, C. Park, W. Jang, and H. Byun, "Facile fabrication and characterization of aliphatic polyketone (PK) micro/nano fiber membranes via electrospinning and a post treatment process", RSC Adv., 11, 678-683 (2020). https://doi.org/10.1039/d0ra08119a