DOI QR코드

DOI QR Code

Estimation for Maximum Individual Wave Overtopping of a Rubble Mound Structure under Non-breaking Conditions

비쇄파조건에서 경사식구조물의 개별 최대월파량 산정

  • 이종인 (전남대학교 공과대학 토목공학과) ;
  • 정정국 (전남대학교 대학원 토목공학과)
  • Received : 2021.08.18
  • Accepted : 2021.09.16
  • Published : 2021.12.01

Abstract

Normally, allowable mean overtopping discharge is used as a design parameter for coastal structures. The crest elevation of a structure must ensure wave overtopping discharge within acceptable limits for structural safety and the safety of pedestrians, vehicles, operations, and so on. Some researchers have alternatively proposed using the maximum individual wave overtopping volumes as design criteria during a design storm, since these can provide a better design measure than the mean overtopping rate. This study contributes to the knowledge on maximum individual overtopping volumes in Rayleigh-distributed wave conditions. Two-dimensional physical model tests on typical rubble mound structure geometries were performed, and the new measurement method for individual overtopping was adopted. An empirical formula was proposed to predict the maximum individual overtopping volumes based on the mean overtopping rate, and the reduction effects by the armor crest width on the mean wave overtopping discharge were assessed.

해안구조물 설계시 허용평균월파량은 설계요소중의 하나이며, 구조물의 마루높이는 구조물의 안전, 보행자의 안전 및 운영 등에 요구되는 월파량 이하가 되도록 하여야 한다. 최근 들어 보다 안전한 설계를 위해 평균월파량보다 개별 최대월파량을 기준으로 적용하자는 제안이 이루어지고 있다. 본 연구는 비쇄파조건에서 개별 최대월파량에 대한 정보를 제공하고자 하는 것이며, 경사식구조물의 기하학적 형상을 고려안 2차원 수리모형실험을 수행하였다. 또한 실험을 위해 새로운 계측방법을 고안하였다. 실험결과를 이용하여 평균월파량에 기반하여 개별 최대월파량을 산정할 수 있는 경험식을 제안하였다. 그리고 피복재 어깨폭에 따른 평균월파량의 저감효과에 대해서도 검토하였다.

Keywords

Acknowledgement

본 논문은 해양수산부 및 해양수산과학기술진흥원의 연구비 지원(과제번호: 20180323) 및 국토교통부 국토교통기술촉진연구 사업의 연구비 지원(18-CTAP-B139288-02)으로 수행된 연구이며, 연구비 지원에 감사드립니다.

References

  1. Besley, P. (1999). Overtopping of sea-walls-design and assessment manual, R&D Technical Report, vol. 178, Environmental Agency, Bristol, UK.
  2. EurOtop (2007). Wave overtopping of sea defences and related structures: Assessment manual (EurOtop manual). Available at: www.overtopping-manual.com (Accessed: June 20, 2021).
  3. EurOtop (2018). Manual on wave overtopping of sea defences and related structures, An overtopping manual largely based on European research, but for worldwide application. Available at: www.overtopping-manual.com (Accessed: June 20, 2021).
  4. Franco, L., de Gerloni, M. and van der Meer, J. W. (1994). "Wave overtopping on vertical and composite breakwaters." Proceedings of 24th International Conference on Coastal Engineering, ASCE, pp. 1030-1044.
  5. Gallach-Sanchez, D. (2018). Experimental study of wave overtopping performance of steep low-crested structures, Ph.D. Thesis, Ghent University.
  6. Hughes, S. A. and Nadal, N. C. (2009). "Laboratory study of combined wave overtopping and storm surge overflow of a levee." Coastal Engineering, Vol. 56, No. 3, pp. 244-259. https://doi.org/10.1016/j.coastaleng.2008.09.005
  7. Ju, Q., Liu, S., Huang, W. and Zhong, G. (2019). "Berm effects on the probability distribution of individual wave overtopping discharge over a low-crested sea dike." Journal of Waterway, Port, Coastal and Ocean Engineering, Vol. 145, 04019012, https://doi.org/10.1061/(asce)ww.1943-5460.0000507.
  8. Koosheh, A., Etemad-Shahidi, A., Cartwright, N., Tomlinson, R. and van Gent, M. R. A. (2021). "Individual wave overtopping at coastal structures: A critical review and the exsisting challenges." Applied Ocean Research, Vol. 106, 102476, https://doi.org/10.1016/j.apor.2020.102476.
  9. Korea Construction Engineering Development (KOCED) (2019). Wave setting up technique for physical model test of harbor and coastal engineering field, SPS-F KOCED 0004-7382:2019, Available at: www.standard.go.kr (Accessed: March 2, 2020).
  10. Lykke-Anderson, T., Burcharth, H. F. and Gironella, F. X. (2009). "Single wave overtopping volumes and their travel distance for rubble mound breakwaters." Coastal Structures 2007: Proceedings of the 5th International Conference, pp. 1241-1252.
  11. Molines, J., Herrera, M. P., Gomez-Martin, M. and Medina, J. R. (2019). "Distribution of individual overtopping volumes on mound breakwaters." Coastal Engineering, Vol. 149, pp. 15-27. https://doi.org/10.1016/j.coastaleng.2019.03.006
  12. Norgaard, J. Q. H., Lykke-Anderson, T. and Burcharth, H. F. (2014). "Distribution of individual wave overtopping volumes in shallow water wave conditions." Coastal Engineering, Vol. 83, pp. 15-23. https://doi.org/10.1016/j.coastaleng.2013.09.003
  13. Pan, Y., Kuang, C. P., Li, L. and Am ini, F. (2015). "Full-scale laboratory study on distibution of individual wave overtopping volumes over a levee under negative freeboard." Coastal Engineering, Vol. 97, pp. 11-20. https://doi.org/10.1016/j.coastaleng.2014.12.007
  14. Smolka, E., Zarranz, G. and Medina, J. R. (2009). Estudio experimental del rebase de un dique en talud de cubipodos, Libro de las X Jornadas Espanolas de Coastas y Puertos. Universidad de Cantabria-Adif Congresos, pp. 803-809 (in Spanish).
  15. USACE (2006). Coastal engineering manual, U.S. Army Coastal Engineering Research Center, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.
  16. van der Meer, J. W. and Janssen, J. (1994). Wave run-up and wave overtopping at dikes and revetments, Delft Hydraulics, Publication No. 485.
  17. Victor, L. (2012). Optimization of the hydrodynamic performance of overtopping wave energy converters: experimental study of optimal geometry and probability distribution of overtopping volumes, Ph.D. Thesis, Ghent University, Belgium.
  18. Victor, L., van der Meer, J. W. and Troch, P. (2012). "Probability distribution of individual wave overtopping volumes for smooth impermeable steep slopes with low crest freeboard." Coastal Engineering, Vol. 64, pp. 87-101. https://doi.org/10.1016/j.coastaleng.2012.01.003
  19. Zanuttigh, B., van der Meer, J. W., Bruce, T. and Hughes, S. (2013). "Statistical characterization of extreme overtopping wave volumes." Proceedings of the Ice, Coasts, Marine Structures and Breakwaters, Vol. 1, ICE Publishing, London, UK, pp. 442-452.