DOI QR코드

DOI QR Code

Protective Effect of Phragmitis Rhizoma against Oxidative Stress-induced DNA Damage and Apoptosis in Chang Liver Cells

산화적 스트레스에 의한 간세포의 DNA 손상 및 apoptosis 유도에 대한 노근 추출물의 보호 효과

  • Received : 2021.11.18
  • Accepted : 2021.12.20
  • Published : 2021.12.30

Abstract

Objectives: Phragmitis Rhizoma is the fresh or dried rhizome of Phragmites communis Trin., which has been prescribed in traditional Korean medicine to relieve fever and vomiting and to nourish the body fluids. Recently, the protective effect of Phragmitis Rhizoma extract or its components on myelotoxicity and inflammatory responses have been reported, but no study has yet been conducted on oxidative stress. Methods: The present study investigated whether an ethanol extract of Phragmitis Rhizoma (PR) could protect against cellular damage induced by oxidative stress in Chang liver cells. Results: Pretreatment with PR significantly suppressed the hydrogen peroxide (H2O2)-induced reduction of Chang cell viability and generation of reactive oxygen species (ROS), thereby deferring apoptosis. PR also markedly inhibited H2O2-induced comet tail formation and phospho-γH2AX expression, suggesting that PR protected against oxidative stress-mediated DNA damage. PR also effectively prevented the inhibition of ATP synthesis in H2O2-treated Chang cells by inhibiting the loss of mitochondrial membrane potential, indicating that PR maintains energy metabolism through preservation of mitochondrial function while eliminating ROS generated by H2O2. Immunoblotting results indicated that PR attenuated the H2O2-induced downregulation of Bcl-2 and upregulation of Bax expression. Conclusions: PR protects against oxidative injury in Chang liver cells by regulating energy homeostasis via ROS generation blockade, which is at least partly mediated through inactivation of the mitochondria-mediated apoptosis pathway.

Keywords

References

  1. Zhang W, Qian C, Li SQ. Protective effect of SGK1 in rat hippocampal neurons subjected to ischemia reperfusion. Cell Physiol Biochem 2014;34:299-312. https://doi.org/10.1159/000363000
  2. Devasagayam TP, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD. Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India 2004;52:794-804.
  3. Rao KS. Free radical induced oxidative damage to DNA: relation to brain aging and neurological disorders. Indian J Biochem Biophys 2009;46(1):9-15.
  4. Wang R, Liu YY, Liu XY, Jia SW, Zhao J, Cui D, Wang L. Resveratrol protects neurons and the myocardium by reducing oxidative stress and ameliorating mitochondria damage in a cerebral ischemia rat model. Cell Physiol Biochem 2014;34:854-64. https://doi.org/10.1159/000366304
  5. De I, Dogra N, Singh S. The mitochondrial unfolded protein response: Role in cellular homeostasis and disease. Curr Mol Med 2017;17(9):587-97. https://doi.org/10.2174/1566524018666180308110130
  6. Valko M, Jomova K, Rhodes CJ, Kuca K, Musilek K. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol 2016;90(1):1-37. https://doi.org/10.1007/s00204-015-1579-5
  7. Kivrak EG, Yurt KK, Kaplan AA, Alkan I, Altun G. Effects of electromagnetic fields exposure on the antioxidant defense system. J Microsc Ultrastruct 2017;5(4):167-76. https://doi.org/10.1016/j.jmau.2017.07.003
  8. Maurya PK, Noto C, Rizzo LB, Rios AC, Nunes SO, Barbosa DS, et al. The role of oxidative and nitrosative stress in accelerated aging and major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2016;65:134-44. https://doi.org/10.1016/j.pnpbp.2015.08.016
  9. Satoh T, McKercher SR, Lipton SA. Nrf2/ARE-mediated antioxidant actions of pro-electrophilic drugs. Free Radic Biol Med 2013;65:645-57. https://doi.org/10.1016/j.freeradbiomed.2013.07.022
  10. Trinh MD, Ngo DH, Tran DK, Tran QT, Vo TS, Dinh MH, et al. Prevention of H2O2-induced oxidative stress in Chang liver cells by 4-hydroxybenzyl-chitooligomers. Carbohydr Polym 2014;103:502-9. https://doi.org/10.1016/j.carbpol.2013.12.061
  11. Nagatsu T, Sawada M. Molecular mechanism of the relation of monoamine oxidase B and its inhibitors to Parkinson's disease: possible implications of glial cells. J Neural Transm Suppl 2006;71:53-65.
  12. Liu J, Yang P, Zuo G, He S, Tan W, Zhang X, et al. Long-chain fatty acid activates hepatocytes through CD36 mediated oxidative stress. Lipids Health Dis 2018;17(1):153. https://doi.org/10.1186/s12944-018-0790-9
  13. Um JH, Kim EA, Lee W, Kang N, Han EJ, Oh JY, et al. Protective effects of an enzymatic hydrolysate from Octopus ocellatus Meat against hydrogen peroxide-induced oxidative stress in Chang liver cells and zebrafish embryo. Adv Exp Med Biol 2017;975 Pt 1:603-20. https://doi.org/10.1007/978-94-024-1079-2_47
  14. Yoon C, Koppula S, Yoo S, Yum M, Kim J, Lee J, Song M. Rhus javanica Linn protects against hydrogen peroxide-induced toxicity in human Chang liver cells via attenuation of oxidative stress and apoptosis signaling. Mol Med Rep 2016;13(1):1019-25. https://doi.org/10.3892/mmr.2015.4603
  15. Kim K, Oh IK, Yoon KS, Ha J, Kang I, Choe W. Antioxidant activity is required for the protective effects of cyclophilin A against oxidative stress. Mol Med Rep 2015;12(1):712-8. https://doi.org/10.3892/mmr.2015.3392
  16. Dai SH, Chen T, Wang YH, Zhu J, Luo P, Rao W, et al. Sirt3 attenuates hydrogen peroxide-induced oxidative stress through the preservation of mitochondrial function in HT22 cells. Int J Mol Med 2014;34(4):1159-68. https://doi.org/10.3892/ijmm.2014.1876
  17. Nohl H, Jordan W. The metabolic fate of mitochondrial hydrogen peroxide. Eur J Biochem 1980;111(1):203-10. https://doi.org/10.1111/j.1432-1033.1980.tb06094.x
  18. Teepker M, Anthes N, Krieg JC, Vedder H. 2-OH-estradiol, an endogenous hormone with neuroprotective functions. J Psychiatr Res 2003;37(6):517-23. https://doi.org/10.1016/S0022-3956(03)00068-2
  19. Kim AD, Kang KA, Piao MJ, Kim KC, Zheng J, Yao CW, et al. Cytoprotective effect of eckol against oxidative stress-induced mitochondrial dysfunction: involvement of the FoxO3a/AMPK pathway. J Cell Biochem 2014;115(8):1403-11. https://doi.org/10.1002/jcb.24790
  20. Burczynski FJ, Wang G, Nguyen D, Chen Y, Smith HJ, Gong Y. Silymarin and hepatoprotection. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2012;37(1):6-10.
  21. Aito H, Aalto KT, Raivio KO. Adenine nucleotide metabolism and cell fate after oxidant exposure of rat cortical neurons: effects of inhibition of poly(ADP-ribose) polymerase. Brain Res 2004;1013(1):117-24. https://doi.org/10.1016/j.brainres.2004.04.014
  22. 전국한의과대학 본초학공동교재 편찬위원회. 本草學. 서울: 영림사; 2014, p. 203-5.
  23. 李洪, 王麟, 陈王莹, 刘薇, 安静. 药芦根化学成分, 药理作用及临床应用研究. 科技信息 2014;5:31-2.
  24. Park SJ, Kim YW, Park MK, Byun SH, Kim SC, Lee JR. Anti-inflammatory steroid from Phragmitis rhizoma modulates LPS-mediated signaling through inhibition of NF-κB pathway. Inflammation 2016;39(2):727-34. https://doi.org/10.1007/s10753-015-0299-6
  25. Mo JH, Oh SJ. A study on P. Rhizoma extract's anti-micobial activity and cytotoxicity. Asian J Beauty Cosmetol 2011;9(4):1-12.
  26. Kim BS. The effects of Phragmitis Rhizoma herbal-acupuncture solution on inflammation in human mast cells and human alveolar epithelial cell lines - Phragmitis Rhizoma's effects -. J Kor Med 2014;35(4):1-9. https://doi.org/10.13048/jkm.14039
  27. Zhang G, Fan M, Pong DY, Fang F. Protective effect of P-Poly on carbon tetrachloride induced liver damage in mice. Chinese Pharmacological Bulletin 2002;18(3):354-5. https://doi.org/10.3321/j.issn:1001-1978.2002.03.036
  28. Han GL, Li LH, Gao JR, Xia LZ. Influence and Mechanism of Polysaccharide of Rhizoma Phragmitis on Immunological Hepatic Fibrosis Model Rats. Chinese Journal of Information on TCM 2012;19(7):42-3.
  29. Zhang MH, Jiang JZ, Cai YL, Piao LH, Jin Z. Intervention effect of ethanol extract of Rhizoma phragmitis on oxidative stress of liver mitochondrial in mice with diabetes mellitus. Journal of Medical science Yanbian University 2011;34(4):270-2.
  30. Parone PA, Da Cruz S, Han JS, McAlonis-Downes M, Vetto AP, Lee SK, et al. Enhancing mitochondrial calcium buffering capacity reduces aggregation of misfolded SOD1 and motor neuron cell death without extending survival in mouse models of inherited amyotrophic lateral sclerosis. J Neurosci 2013;33(11):4657-71. https://doi.org/10.1523/JNEUROSCI.1119-12.2013
  31. Mansouri A, Gattolliat CH, Asselah T. Mitochondrial dysfunction and signaling in chronic liver diseases. Gastroenterology 2018;155(3):629-47. https://doi.org/10.1053/j.gastro.2018.06.083
  32. Wang Z, Li Z, Ye Y, Xie L, Li W. Oxidative stress and liver cancer: Etiology and therapeutic targets. Oxid Med Cell Longev 2016;2016:7891574.
  33. Ceni E, Mello T, Galli A. Pathogenesis of alcoholic liver disease: role of oxidative metabolism. World J Gastroenterol 2014;20(47):17756-72. https://doi.org/10.3748/wjg.v20.i47.17756
  34. Ost M, Keipert S, Klaus S. Targeted mitochondrial uncoupling beyond UCP1 - The fine line between death and metabolic health. Biochimie 2017;134:77-85. https://doi.org/10.1016/j.biochi.2016.11.013
  35. Auger C, Alhasawi A, Contavadoo M, Appanna VD. Dysfunctional mitochondrial bioenergetics and the pathogenesis of hepatic disorders. Front Cell Dev Biol 2015;3:40.
  36. Kim JH, Lee YJ, Ahn YA, Cho ES, Huh EN, Bang OS, et al. Aqueous extract of Phragmitis rhizoma ameliorates myelotoxicity of docetaxel in vitro and in vivo. BMC Complement Altern Med 2017;17(1):393. https://doi.org/10.1186/s12906-017-1890-1
  37. Schadler MH, Butterstein GM, Faulkner BJ, Rice SC, Weisinger LA. The plnat metabolite, 6-methoxybenzoxazolinone, Stimulates an Increase in secretion of follicle-stimulating hormone and size of reproductive organs in Microtus pinetorum. Biology of reproduction 1988;38(4):817-20. https://doi.org/10.1095/biolreprod38.4.817
  38. Sanders EH, Gardner PD, Berger PJ, Negus NC. 6-methoxybenzoxazolinone: a plant derivative that stimulatesreproduction in Microtus montanus. Science 1981;214:67-9. https://doi.org/10.1126/science.7025209
  39. Sun XY, Deng L, Zhao YH, Li YC. Influence of the Aqueous Extract of Rhizoma Phragmitis on Mice's Nonspecific Immunity Function. Henan traditional chinese medicine 2016;36(9):1525-7.
  40. Chung YH, Park TK, Yim SH, Lee JH, Bang JS, Shin YK, et al. Polysaccharide-Rich Extract of Phragmites rhizoma attenuates water immersion stress and forced swimming fatigue in rodent anmial model. J Med Food 2019;22(4):355-64. https://doi.org/10.1089/jmf.2018.4218
  41. Xu H. Protective effect of Rhizoma Phragmitis Polysaccharide on kidney in hyperlipidemia-induced rats. China medical herald 2014;11(19):24-7.
  42. Cardaci S, Filomeni G, Ciriolo MR. Redox implications of AMPK-mediated signal transduction beyond energetic clues. J Cell Sci 2012;125(Pt 9):2115-25. https://doi.org/10.1242/jcs.095216
  43. Mammucari C, Rizzuto R. Signaling pathways in mitochondrial dysfunction and aging. Mech Ageing Dev 2010;131(7-8):536-43. https://doi.org/10.1016/j.mad.2010.07.003
  44. Collins AR, El Yamani N, Lorenzo Y, Shaposhnikov S, Brunborg G, Azqueta A. Controlling variation in the comet assay. Front Genet 2014;5:359. https://doi.org/10.3389/fgene.2014.00359
  45. Takahashi A, Ohnishi T. Does gammaH2AX foci formation depend on the presence of DNA double strand breaks? Cancer Lett 2005;229(2):171-9. https://doi.org/10.1016/j.canlet.2005.07.016
  46. Valero T. Mitochondrial biogenesis: pharmacological approaches. Curr Pharm Des 2014;20(5):5507-9. https://doi.org/10.2174/138161282035140911142118
  47. Rigoulet M, Yoboue ED, Devin A. Mitochondrial ROS generation and its regulation: mechanisms involved in H2O2 signaling. Antioxid Redox Signal 2011;14(3):459-68. https://doi.org/10.1089/ars.2010.3363
  48. Thirupathi A, de Souza CT. Multi-regulatory network of ROS: the interconnection of ROS, PGC-1 alpha, and AMPK-SIRT1 during exercise. J Physiol Biochem 2017;73(4):487-94. https://doi.org/10.1007/s13105-017-0576-y
  49. Kiraz Y, Adan A, Kartal Yandim M, Baran Y. Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biol 2016;37(7):8471-86. https://doi.org/10.1007/s13277-016-5035-9
  50. Wu CC, Bratton SB. Regulation of the intrinsic apoptosis pathway by reactive oxygen species. Antioxid Redox Signal 2013;19(6):546-58. https://doi.org/10.1089/ars.2012.4905
  51. Kadenbach B, Arnold S, Lee I, Hut emann M. The possible role of cytochrome c oxidase in stress-induced apoptosis and degenerative diseases. Biochim Biophys Acta 2004;1655(1-3):400-8. https://doi.org/10.1016/j.bbabio.2003.06.005
  52. Lindsay J, Esposti MD, Gilmore AP. Bcl-2 proteins and mitochondria-specificity in membrane targeting for death. Biochim Biophys Acta 2011;1813(4):532-9. https://doi.org/10.1016/j.bbamcr.2010.10.017
  53. Waterhouse NJ, Goldstein JC, von Ahsen O, Schuler M, Newmeyer DD, Green DR. Cytochrome c maintains mitochondrial transmembrane potential and ATP generation after outer mitochondrial membrane permeabilization during the apoptotic process. J Cell Biol 2001;153(2):319-28. https://doi.org/10.1083/jcb.153.2.319