DOI QR코드

DOI QR Code

Pyrolysis Effect of Nitrous Oxide Depending on Reaction Temperature and Residence Time

반응온도 및 체류시간에 따른 아산화질소 열분해 효과

  • Park, Juwon (Department of Marine System Engineering, Korea Maritime & Ocean University) ;
  • Lee, Taehwa (Division of Marine System Engineering, Korea Maritime & Ocean University) ;
  • Park, Dae Geun (Carbon Neutral Technology R&D Department, Korea Institute of Industrial Technology (KITECH)) ;
  • Kim, Seung Gon (Advanced Combustion Power Research Group, Korea Institute of Energy Research (KIER)) ;
  • Yoon, Sung Hwan (Interdisciplinary Major of Maritime AI Convergence, Korea Maritime & Ocean University)
  • 박주원 (한국해양대학교 기관시스템공학과) ;
  • 이태화 (한국해양대학교 기관시스템공학부) ;
  • 박대근 (한국생산기술연구원 탄소중립산업기술연구부문) ;
  • 김승곤 (한국에너지기술연구원 신연소발전연구실) ;
  • 윤성환 (한국해양대학교 해양인공지능융합전공)
  • Received : 2021.12.01
  • Accepted : 2021.12.28
  • Published : 2021.12.31

Abstract

Nitrous oxide (N2O) is one of the six major greenhouse gases and is known to produce a greenhouse ef ect by absorbing infrared radiation in the atmosphere. In particular, its global warming potential (GWP) is 310 times higher than that of CO2, making N2O a global concern. Accordingly, strong environmental regulations are being proposed. N2O reduction technology can be classified into concentration recovery, catalytic decomposition, and pyrolysis according to physical methods. This study intends to provide information on temperature conditions and reaction time required to reduce nitrogen oxides with cost. The high-temperature ranges selected for pyrolysis conditions were calculated at intervals of 100 K from 1073 K to 1373 K. Under temperatures of 1073 K and 1173 K, the N2O reduction rate and nitrogen monoxide concentration were observed to be proportional to the residence time, and for 1273 K, the N2O reduction rate decreased due to generation of the reverse reaction as the residence time increased. Particularly for 1373 K, the positive and reverse reactions for all residence times reached chemical equilibrium, resulting in a rather reduced reaction progression to N2O reduction.

아산화질소(N2O, Nitrous Oxide)는 6대 온실가스 중 하나로 대기 중에서 적외선을 흡수하여 온실효과를 유발하는 것으로 알려져 있다. 특히 지구온난화지수(GWP)는 CO2에 비해 310배 높아 국내뿐만 아니라 전 세계적으로 이슈화되고 있으며, 그에 따른 강력한 환경 규제 강화법들이 발의되고 있다. N2O 저감 기술에는 물리적인 방식에 따라 농축회수, 촉매분해, 그리고 열분해로 구분할 수 있는데, 본 연구에서는 그 중 가장 효과적인 열분해 처리방식에 대해 논의하고자 일반적인 연소 조건 내 고온 열분해 방식을 이용하여 비용 저감과 함께 질소산화물을 저감시키는 온도 조건 및 반응 시간에 대한 정보를 제공하고자 한다. 열분해 조건으로 선정된 고온 영역은 1073 K부터 1373 K까지 100 K 간격을 두고 계산을 수행하였다. 1073 K과 1173 K의 온도조건에 경우, N2O 저감율과 일산화질소 농도가 체류시간에 따라 비례관계를 이루는 것이 관측되었으며, 1273 K에 경우, 체류시간이 증가함에 따라 발생되는 역반응으로 인해 N2O 저감율이 감소되는 것이 관측되었다. 특히 1373 K에 경우, 모든 체류시간에 대해 정반응과 역반응이 화학 평형상태에 도달하여 N2O 저감에 대한 반응진행율이 오히려 감소하는 것으로 확인되었다.

Keywords

Acknowledgement

본 연구는 2019년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(No. 20005750), 본 연구는 2021년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(No. 20015606).

References

  1. Chang, K. S.(2007), Status and Trends of Emission Reduction Technologies and CDM Projects of Greenhouse Gas Nitrous Oxide, The Journal of Korea Industrial and Engineering Chemistry, Vol. 19, No. 1, pp. 17-26.
  2. Hu, X. Y., C. Q. Dong, Y. P. Yang, and J. J. Zhang(2011), The Effect of Biomass Pyrolysis Gas Reburning on N2O Emission in a Coal-fired Fluidized Bed Boiler, Chinese Science Bulletin, Vol. 56, pp. 1429-1433. https://doi.org/10.1007/s11434-010-4145-9
  3. Jeong, M. S. and J. I. Dong(2011), A Study on Reduction of N2O from Urea-SNCR Process, University of Seoul graduate school.
  4. Jin, S. Y., J. Seo, H. Kim, S. H. Shin, D. H. Nam, S. M. Kim, D. Kim, and S. H. Yoon(2021), Treatment Technology of N2O by using Bunsen Premixed Flame, Journal of the Korean Society of Marine Environment & Safety, Vol. 27, No. 1, pp. 153-160. https://doi.org/10.7837/kosomes.2021.27.1.153
  5. Kang, K. J., S. H. Kim, and E. C. Kim(2004), A Study on the NOx Emission Status and Reduction Technologies of Domestic Marine Engine, Journal of the Korean Society for Marine Environmental Engineering, Vol. 7, No. 2, pp. 57-63.
  6. Kim, J. M. and J. I. Dong(2012), A Study on Reduction of NOx and Emission Characterastic of N2O According to Oxygen from Urea-SNCR Process, University of Seoul graduate school.
  7. Kim, S. Y. and M. Kim(2012), The need to develop Nitrogen Oxides (NOx) Reduction Equipment and Regulation in Marine, The Korean Society of Combustion, No. 4, pp. 69-74.
  8. Lee, H. K. and D. H. Kang(2020), Korean Laws and Practical Issues of Maritime Companies Dealing with Air Pollution Prevention from Ships Focused on IMO Sulphre Cap 2020, The Journal of Korea Maritime Law Association, Vol. 42, No. 1, pp. 101-143.
  9. Lee, H. M., J. G. Yun, and J. G. Hong(2020), A Study of Nitrous Oxide Thermal Decomposition and Reaction Rate in High Temperature Inert Gas, Journal of ILASS-KOREA, Vol. 25, No. 3, pp. 132-138. https://doi.org/10.15435/JILASSKR.2020.25.3.132
  10. Lee, J. H. and J. S. Kwak(2018), Marine Generator System for Reduction in Air Pollutants, Transactions of the Korean Society of Mechanical Engineers-A, Vol. 47, No. 10, pp. 939-944.
  11. Lee, S. J., J. G. Yun, H. M. Lee, J. Y. Kim, J. H. Yun, and J. G. Hong(2021), Dependence of N2O/NO Decomposition and Formation on Temperature and Residence Time in Thermal Reeactor, Energies, Vol. 14, No. 4, pp. 1153-1163. https://doi.org/10.3390/en14041153
  12. Loffler, G., V. J. Wargadalam, F. Winter, and H. Hofbauer (2000), Decomposition of Nitrous Oxide at Medium Temperatures, Combustion and flame, Vol. 120, No. 4, pp. 427-438. https://doi.org/10.1016/S0010-2180(99)00106-6
  13. Sim, H. S.(2011), A Study on NOx Reduction for a Small Marine Diseel Engine, Journal of the Korean Society of Manufacturing Process Engineers, Vol. 10, No. 5, pp. 79-84.
  14. Smith, G. P., D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, Jr., V. V. Lissianski and Z. Qin(1999), http://www.me.berkeley.edu/gri_mech/.
  15. Yoo, D. H.(2014), Effect of Fuel Component on Nitrous Oxide Emission Characteristics in Diesel Engine, Journal of the Korean Society of Maritime Engineering, Vol. 38, No. 9, pp. 1045-1050.
  16. Yoo, K. S. and S. W. Park(2017), Improvement of DeNOx efficiency of SNCR Process with Chemical Additives in Urea Soution, Journal of the Korea Academia-Industrial cooperation Society, Vol. 18, No. 10, pp. 663-668. https://doi.org/10.5762/KAIS.2017.18.1.663
  17. Zel'dovich, Y. B.(1946), The Oxidation of Nitrogen in Combustion Explosions, Acta Physicochimica U.S.S.R. 21, pp. 577-628.