DOI QR코드

DOI QR Code

Effect of Propeller Eccentric Thrust Change on Propusion Shafting System

프로펠러 편심추력변동이 축계안정성에 미치는 영향 연구

  • Lee, Ji-woong (Division of Marine System Engineering, Korea Maritime and Ocean University) ;
  • Lee, Jae-ung (Division of Marine System Engineering, Korea Maritime and Ocean University)
  • 이지웅 (한국해양대학교 기관시스템공학부) ;
  • 이재웅 (한국해양대학교 기관시스템공학부)
  • Received : 2021.10.15
  • Accepted : 2021.12.28
  • Published : 2021.12.31

Abstract

The propeller shaft has different pattern of behaviors at each static, dynamic, and transient condition to a ship shaft system due to the effects of propeller weight and eccentric thrust, which increases the potential risk of bearing failure by causing local load variations. To prevent this, the various research of the shafting system has been conducted with the emphasis on optimizing the relative slope and oil film retention between propeller shaft and stern tube bearing at quasi-static condition, mainly with respect to the Rules for the Classification of Steel Ships. However, to guarantee a stability of the shafting system, it is necessary to consider the dynamic condition including the transient state due to the sudden change in the stern wakefield during rudder turn. In this context, this study cross-validated the ef ect of propeller shaft behavior on the stern tube bearing during port turn operation, which is a typical transient condition, by using the strain gauge method and displacement sensor for 50,000 DWT medium class tanker. And it was confirmed that the propeller eccentric thrust change showing relief the load of the stern tube bearing.

프로펠러축은 프로펠러 하중 및 편심추력의 영향으로 인해 정적, 동적, 과도상태 각각 거동의 패턴이 달라져 선미관 후부베어링의 국부하중 변화를 일으킴으로써 선박 축계의 안정성에 큰 영향을 미치며, 결과적으로 축 지지 베어링의 손상위험을 증가시킨다. 이를 방지하기 위한 일련의 축계정렬연구는 선급강선규칙과 조선소 지침을 기반으로 준정적 상태에서 축과 선미관 베어링간의 상대적 경사각과 유막유지, 선체변형에 따른 영향평가를 최적화 하는데 중점을 두어 진행 되어왔다. 그러나 보다 진일보한 형태의 추진축계의 안정성을 보장하기 위해서는 조타장치의 전타시 발생하는 급격한 선미유동장 변화와 같은 과도동적상태변화 조건에서의 상세 연구가 필요하다. 이러한 관점 하에 본 연구에서는 50,000 DWT 중형 유조선을 대상으로 스트레인 게이지법과 변위센서을 이용하여 선박운전 중 대표적 과도상태인 좌현 전타시의 프로펠러 축 거동이 선미관 베어링에 미치는 영향을 교차검증한 결과, 프로펠러 편심추력변동이 선미관 베어링의 하중을 일시적으로 저감시켜 베어링 하중을 완화시키는 것을 확인하였다.

Keywords

Acknowledgement

이 논문은 2019학년도 한국해양대학교 학술연구지원사업 신진 교수 정착 연구비의 지원을 받아 수행된 연구이며 2020년도 (사)해양환경안전학회 춘계학술발표회에 발표한 논문을 개선한 것입니다. 본 논문은 2021년도 해양수산부 및 해양수산과학기술진흥원 연구비 지원으로 수행된 '자율운항선박 기술개발사업(20200615) 및 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구(No. NRF-2021R1F1A1047115)'의 결과입니다. 이에 감사드립니다

References

  1. American Bureau of Shipping(ABS)(2019), Guidance notes on propulsion shafting alignment. In Section 4: Alignment Measurements and Monitoring, pp. 107-110, USA: ABS.
  2. Dubbioso, G., R. Muscari, F. Ortolani, and A. Di Mascio (2017), Analysis of propeller bearing loads by CFD. Part I: straight ahead and steady turning maneuvers. Ocean Engineering, Vol. 130, pp. 241-259. https://doi.org/10.1016/j.oceaneng.2016.12.004
  3. Kuroiwa, R., A. Oshima, T. Nishioka, T. Tateishi, K. Ohyama, and T. Ishijima(2007), Reliability improvement of stern tube bearing considering propeller shaft forces during ship turning. Mitshbishi Heavy Industries, Ltd. Technical Review, Vol. 44, No. 3, pp. 1-3.
  4. Lee, J. U.(2016), A study on the analysis of bearing reaction forces and hull deflections affecting shaft alignment using strain gauges for a 50,000 DWT oil/chemical tanker. Journal of the Korean Society of Marine Engineering, Vol. 40, No. 4, pp. 288-294, doi:10.5916/jkosme.2016.40.4.288.
  5. Lee, J. U.(2017), Effect of propeller forces into propulsion shafting system in accordance with engine load of 50K DWT class product oil/chemical tanker during ship acceleration. Journal of the Korean Society of Marine Engineering, Vol. 41, No. 9, pp. 801-806, doi:10.5916/jkosme.2017.41.9.801.
  6. Lee, J. U.(2018), Application of strain gauge method for investigating influence of ship shaft movement by hydrodynamic propeller forces on shaft alignment. Measurement, Vol. 121, pp. 261-275, doi:10.1016/j.measurement.2018.02.067.
  7. Lee, J. U., H. R. Kim, and G. S. Rim(2018), The Effect of Transient Eccentric Propeller Forces on Shaft Behavior Measured Using the Strain Gauge Method During Starboard Turning of a 4,700 DWT Ship. Journal of the Korean Society of Marine Environment and Safety, vol. 24, No. 4, pp. 482-488, doi:10.7837/kosomes.2018.24.4.482.
  8. Lehr, W. and E. Parker(1961), Considerations in the design of marine propulsion shaft systems. Society of Naval Architects and Marine Engineers, Vol. 67, pp. 555-601.
  9. Michel, R.(1959), A quarter century of propulsion shafting design practice and operating experience in the US navy. Journal of the American Society for Naval Engineers, Vol. 71, No. 1, pp. 153-164. https://doi.org/10.1111/j.1559-3584.1959.tb05306.x
  10. Muscari, R., G. Dubbioso, F. Ortolani, and A. Di Mascio (2017), Analysis of propeller bearing loads by CFD. Part II: Transient maneuvers. Ocean Engineering, Vol. 146, pp. 217-233. https://doi.org/10.1016/j.oceaneng.2017.09.050
  11. Saitoh, T.(1983), Dynamic alignment taking account of propeller forces and stern tube bearing performances. Journal of MESJ, Vol. 18, No. 2, pp. 142-153. https://doi.org/10.5988/jime1966.18.142
  12. Shin, S. H.(2015), Effects of propeller forces on the propeller shaft bearing during going straight and turning of ship. Journal of the Society of Naval Architects of Korea, Vol. 52, No. 1, pp. 61-69. https://doi.org/10.3744/SNAK.2015.52.1.61
  13. Takahashi, S., S. Matsumoto, T. Tateishi, K. Ohyama, R. Kuroiwa, and S. Morohoshi(2009), Study on oil film analysis of the stern tube bearing under the conditions of dynamic propeller shaft forces. The Japan Society of Mechanical Engineers, Trans. C, Vol. 75, No. 759, pp. 3054-3061. https://doi.org/10.1299/kikaic.75.3054
  14. Vartdal, B. J., T. Gjestland, and T. I. Arvidsen(2009), Lateral propeller forces and their effects on shaft bearings. Paper presented at the First International Symposium on Marine Propulsors, pp. 475-481, Trondheim Norway.