DOI QR코드

DOI QR Code

Phytoplankton Diversity and Community Structure Driven by the Dynamics of the Changjiang Diluted Water Plume Extension around the Ieodo Ocean Research Station in the Summer of 2020

2020년 하계 장강 저염수가 이어도 해양과학기지 주변 해역의 식물플랑크톤 다양성 및 개체수 변화에 미치는 영향

  • Kim, Jihoon (College of Ocean Science and Technology, Korea Maritime and Ocean University) ;
  • Choi, Dong Han (Marine Ecosystem Research Center, Korea Institute of Ocean Science & Technology) ;
  • Lee, Ha Eun (Marine Ecosystem Research Center, Korea Institute of Ocean Science & Technology) ;
  • Jeong, Jin-Yong (Marine Disaster Research Center, Korea Institute of Ocean Science and Technology) ;
  • Jeong, Jongmin (Marine Disaster Research Center, Korea Institute of Ocean Science and Technology) ;
  • Noh, Jae Hoon (Marine Ecosystem Research Center, Korea Institute of Ocean Science & Technology)
  • 김지훈 (한국해양대학교 해양과학기술전문대학원 해양과학기술융합학과) ;
  • 최동한 (한국해양과학기술원 해양생태연구센터) ;
  • 이하은 (한국해양과학기술원 해양생태연구센터) ;
  • 정진용 (한국해양과학기술원 해양재난.재해연구센터) ;
  • 정종민 (한국해양과학기술원 해양재난.재해연구센터) ;
  • 노재훈 (한국해양과학기술원 해양생태연구센터)
  • Received : 2021.10.25
  • Accepted : 2021.12.28
  • Published : 2021.12.31

Abstract

The expansion of the Changjiang Diluted Water (CDW) plume during summer is known to be a major factor influencing phytoplankton diversity, community structure, and the regional marine environment of the northern East China Sea (ECS). The discharge of the CDW plume was very high in the summer of 2020, and cruise surveys and stationary monitoring were conducted to understand the dynamics of changes in environmental characteristics and the impact on phytoplankton diversity and community structure. A cruise survey was conducted from August 16 to 17, 2020, using R/V Eardo, and a stay survey at the Ieodo Ocean Research Station (IORS) from August 15 to 21, 2020, to analyze phytoplankton diversity and community structure. The southwestern part of the survey area exhibited low salinity and high chlorophyll a fluorescence under the influence of the CDW plume, whereas the southeastern part of the survey area presented high salinity and low chlorophyll a fluorescence under the influence of the Tsushima Warm Current (TWC). The total chlorophyll a concentrations of surface water samples from 12 sampling stations indicated that nano-phytoplankton (20-3 ㎛) and micro-phytoplankton (> 20 ㎛) were the dominant groups during the survey period. Only stations strongly influenced by the TWC presented approximately 50% of the biomass contributed by pico-phytoplankton (< 3 ㎛). The size distribution of phytoplankton in the surface water samples is related to nutrient supplies, and areas where high nutrient (nitrate) supplies were provided by the CDW plume displayed higher biomass contribution by micro-phytoplankton groups. A total of 45 genera of nano- and micro-phytoplankton groups were classified using morphological analysis. Among them, the dominant taxa were the diatoms Guinardia flaccida and Nitzschia spp. and the dinoflagellates Gonyaulax monacantha, Noctiluca scintillans, Gymnodinium spirale, Heterocapsa spp., Prorocentrum micans, and Tripos furca. The sampling stations affected by the TWC and low in nitrate concentrations presented high concentrations of photosynthetic pico-eukaryotes (PPE) and photosynthetic pico-prokaryotes (PPP). Most sampling stations had phosphate-limited conditions. Higher Synechococcus concentrations were enumerated for the sampling stations influenced by low-nutrient water of the TWC using flow cytometry. The NGS analysis revealed 29 clades of Synechococcus among PPP, and 11 clades displayed a dominance rate of 1% or more at least once in one sample. Clade II was the dominant group in the surface water, whereas various clades (Clades I, IV, etc.) were found to be the next dominant groups in the SCM layers. The Prochlorococcus group, belonging to the PPP, observed in the warm water region, presented a high-light-adapted ecotype and did not appear in the northern part of the survey region. PPE analysis resulted in 163 operational taxonomic units (OTUs), indicating very high diversity. Among them, 11 major taxa showed dominant OTUs with more than 5% in at least one sample, while Amphidinium testudo was the dominant taxon in the surface water in the low-salinity region affected by the CDW plume, and the chlorophyta was dominant in the SCM layer. In the warm water region affected by the TWC, various groups of haptophytes were dominant. Observations from the IORS also presented similar results to the cruise survey results for biomass, size distribution, and diversity of phytoplankton. The results revealed the various dynamic responses of phytoplankton influenced by the CDW plume. By comparing the results from the IORS and research cruise studies, the study confirmed that the IORS is an important observational station to monitor the dynamic impact of the CDW plume. In future research, it is necessary to establish an effective use of IORS in preparation for changes in the ECS summer environment and ecosystem due to climate change.

여름철 장강 저염수의 확장은 북부 동중국해의 환경 및 식물플랑크톤 다양성과 군집구조에 영향을 미치는 주요 요인으로 알려져 있다. 2020년 하계는 장강 저염수의 방류량이 매우 높았던 시기로 환경 특성 변화에 따라 식물플랑크톤 다양성 및 군집구조에 미치는 동력을 이해하기 위해 현장관측을 수행하였다. 2020년 8월 16일~17일 이어도호 승선조사와 2020년 8월 15일~21일 이어도 해양과학기지(IORS)에서 체류조사를 실시하였다. 조사 정점들에서 CTD로 측정한 결과 조사 수역 남서쪽은 장강 저염수의 영향을 받아 염분이 낮고 엽록소 형광값이 높았으며, 대마난류의 영향을 받은 남동수역은 염분이 높고 엽록소 형광값이 낮았다. 12개 정점의 표층수 시료의 엽록소 a 농도는 미소형(20~3 ㎛) 및 소형(> 20 ㎛) 식물플랑크톤의 생체량이 우점함을 나타냈으며, 대마난류수의 영향을 받은 정점에서만 초미소 식물플랑크톤(< 3 ㎛) 생체량이 약 50%를 차지하였다. 이러한 표층수의 식물플랑크톤 크기 분포는 영양염류 공급과 관련되어 장강 저염수의 높은 질산염 공급을 받는 정점들은 소형 식물플랑크톤의 생체량 기여율이 높았다. 형태분류 결과 미소형 및 소형 식물플랑크톤은 총 45종이며, 이들 중 우점 분류군은 규조류인 Guinardia flaccida, Nitzschia spp.와 와편모조류인 Gonyaulax monacantha, Noctiluca scintillans, Gymnodinium spirale, Heterocapsa spp., Prorocentrum micans, Tripos furca 등이었다. 대마난류의 영향을 받으며 질산염 농도가 낮은 정점들은 광합성 초미소 진핵생물(PPE)의 개체수와 광합성 초미소 원핵생물(PPP)인 Synechococcus의 개체수가 높았다. 질산염/인산염 비는 대부분 정점에서 인산염 제한을 받고 있음을 나타냈다. 유세포 분석 결과 Synechococcus 개체수는 난류의 영향을 받는 빈영양 수역의 정점들에서 높은 개체수를 보였다. NGS 분석 결과 PPP 중 Synechococcus는 29개의 clades가 나타났고, 이 중 한 시료에서 한 번이라도 1% 이상의 우점율을 보인 clade는 11개로 나타났다. 표층수에선 clade II가 우점분류군이었으며 SCM 층에서 다양한 clades(I과 IV 등)가 차우점군들로 분포하였다. Prochlorococcus 속은 난류 수역에서 high light adapted 생태형이 출현하는 양상을 보였으며 북쪽 수역에선 출현하지 않았다. PPE는 총 163개의 높은 operational taxonomic units(OTUs) 다양성을 보였으며, 이 중 한 시료에서 한 번이라도 5% 이상의 우점률을 나타낸 OTU는 총 11개였다. 장강 저염수의 영향을 받는 정점의 표층수에선 Amphidinium testudo가 우점 분류군이었으며, SCM 층에서 녹조류가 최우점하였다. 대마난류의 영향을 받는 해역에서는 다양한 분류군의 착편모조류가 우점하였다. IORS에서의 관측 결과도 주변 정점들과 식물플랑크톤 생체량, 크기분포, 다양성에서 유사한 수준을 나타냈다. 이번 연구 결과는 장강 저염수의 영향에 따른 식물플랑크톤의 반응을 다양한 분야에서 확인할 수 있었다. 또한, IORS와 승선조사를 비교하여 IORS 관측이 장강 저염수의 식물플랑크톤 동적 역학 모니터링에 활용할 수 있음을 확인하였다. 향후 기후변화에 따라 나타날 동중국해 하계 환경 및 생태계의 변화에 대비하여 IORS의 효과적 이용 방안 수립이 필요할 것으로 판단된다.

Keywords

Acknowledgement

이 논문은 2021년 해양수산부의 재원으로 한국해양과학기술진흥원의 지원을 받아 수행된 연구임(관할해역 첨단 해양과학기지 구축 및 융합연구)

References

  1. Ahlgren, N. A. and G. Rocap(2012), Diversity and distribution of marine Synechococcus: multiple gene phylogenies for consensus classification and development of qPCR assays for sensitive measurement of clades in the ocean. Frontiers in Microbiology, Vol. 3, No. 213.
  2. Alric, B., C. J. Ter Braak, Y. Desdevises, H. Lebredonchel, and S. Dray(2020), Investigating microbial associations from sequencing survey data with correspondence analysis, Molecular ecology resources, Vol. 20, No. 2, pp. 468-480. https://doi.org/10.1111/1755-0998.13126
  3. Arar, E. J. and G. B. Collins(1997), Method 445.0: In vitro determination of chlorophyll a and pheophytin a in marine and freshwater algae by fluorescence, Cincinnati: United States Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, pp. 1-22.
  4. Byun, D. S., J. Y. Jeong, D. J. Kim, S. Hong, K. T. Lee, and K. Lee(2021), Ocean and atmospheric observations at the remote Ieodo Ocean Research Station in the northern East China Sea, Frontiers in Marine Science, Vol. 8, No. 714.
  5. Chang, P. H. and A. Isobe(2003), A numerical study on the Changjiang diluted water in the Yellow and East China Seas, Journal of Geophysical Research: Oceans, Vol. 108, Article. C9.
  6. Chen, C. T. A.(2008), Distributions of nutrients in the East China Sea and the South China Sea connection, Journal of Oceanography, Vol. 64 No. 5, pp. 737-751. https://doi.org/10.1007/s10872-008-0062-9
  7. Chen, Y. L. L., H. Y. Chen, G. C. Gong, Y. H. Lin, S. Jan, and M. Takahashi(2004), Phytoplankton production during a summer coastal upwelling in the East China Sea, Continental Shelf Research, Vol. 24, No. 12, pp. 1321-1338. https://doi.org/10.1016/j.csr.2004.04.002
  8. Choi, B. H.(1984), A three-dimensional model of the East China Sea. In Elsevier oceanography series, Vol. 39, pp. 209-224.
  9. Choi, D. H.(2012), Picocyanobacterial diversity and distribution during summer in the northern East China Sea, Ocean and Polar Research, Vol. 34, No. 1, pp. 19-28. https://doi.org/10.4217/OPR.2012.34.1.019
  10. Choi, D. H., S. M. An, S. Chun, E. C. Yang, K. E. Selph, C. M. Lee, and J. H. Noh(2016), Dynamic changes in the composition of photosynthetic picoeukaryotes in the northwestern Pacific Ocean revealed by high-throughput tag sequencing of plastid 16S rRNA genes, FEMS microbiology ecology, Vol. 92, No. 2.
  11. Choi, D. H. and J. H. Noh(2009), Phylogenetic diversity of Synechococcus strains isolated from the East China Sea and the East Sea, FEMS microbiology ecology, Vol. 69, No. 3, pp. 439-448. https://doi.org/10.1111/j.1574-6941.2009.00729.x
  12. Choi, D. H., J. H. Noh, M. S. Hahm, and C. M. Lee(2011), Picocyanobacterial abundances and diversity in surface water of the northwestern Pacific Ocean, Ocean Science Journal, Vol. 46, No. 4, pp. 265-271. https://doi.org/10.1007/s12601-011-0020-0
  13. Choi, D. H., J. H. Noh, and J. Shim(2013), Seasonal changes in picocyanobacterial diversity as revealed by pyrosequencing in temperate waters of the East China Sea and the East Sea, Aquatic Microbial Ecology, Vol. 71, No. 1, pp. 75-90. https://doi.org/10.3354/ame01669
  14. Christaki, U., S. Genitsaris, S. Monchy, L. L. Li, S. Rachik, E. Breton, and T. Sime-Ngando(2017), Parasitic eukaryotes in a meso-eutrophic coastal system with marked Phaeocystis globosa blooms, Frontiers in Marine Science, Vol. 4, No. 416.
  15. Edmond, J. M., A. Spivack, B. C. Grant, H. Ming-Hui, C. Zexiam, C. Sung, and Z. Xiushau(1985), Chemical dynamics of the Changjiang estuary, Continental Shelf Research, Vol. 4, No. 1-2, pp. 17-36. https://doi.org/10.1016/0278-4343(85)90019-6
  16. Faria, D. G., M. D. Lee, J. B. Lee, J. Lee, M. Chang, S. H. Youn, Y. S. Suh, and J. S. Ki(2014), Molecular diversity of phytoplankton in the East China Sea around Jeju Island (Korea), unraveled by pyrosequencing, Journal of Oceanography, Vol. 70, No. 1, pp. 11-23. https://doi.org/10.1007/s10872-013-0208-2
  17. Finkel, Z. V., J. Beardall, K. J. Flynn, A. Quigg, T. A. V. Rees, and J. A. Raven(2010), Phytoplankton in a changing world: cell size and elemental stoichiometry, Journal of plankton research, Vol. 32, No. 1, pp. 119-137. https://doi.org/10.1093/plankt/fbp098
  18. Furuya, K., M. Hayashi, Y. Yabushita, and A. Ishikawa(2003), Phytoplankton dynamics in the East China Sea in spring and summer as revealed by HPLC-derived pigment signatures, Deep Sea Research Part II: Topical Studies in Oceanography, Vol. 50, No. 2, pp. 367-387. https://doi.org/10.1016/S0967-0645(02)00460-5
  19. Gomes, H. D. R., Q. Xu, J. Ishizaka, E. J. Carpenter, P. L. Yager, and J. I. Goes(2018), The influence of riverine nutrients in niche partitioning of phytoplankton communities - a contrast between the Amazon River Plume and the ChangJiang (Yangtze) River diluted water of the East China Sea, Frontiers in Marine Science, Vol. 5, No. 343.
  20. Gong, G. C., Y. L. L. Chen, and K. K. Liu(1996), Chemical hydrography and chlorophyll a distribution in the East China Sea in summer: implications in nutrient dynamics, Continental Shelf Research, Vol. 16, No. 12, pp. 1561-1590. https://doi.org/10.1016/0278-4343(96)00005-2
  21. Gong, G. C., J. Chang, K. P. Chiang, T. M. Hsiung, C. C. Hung, S. W. Duan, and L. A. Codispoti(2006), Reduction of primary production and changing of nutrient ratio in the East China Sea: Effect of the Three Gorges Dam?, Geophysical Research Letters, Vol. 33, No. 7.
  22. Harrison, P. J., K. Furuya, P. M. Glibert, J. Xu, H. B. Liu, K. Yin, J. H. W. Lee, D. M. Anderson, R. Gowen, A. R. Al-Azri, and A. Y. T. Ho(2011), Geographical distribution of red and green Noctiluca scintillans, Chinese Journal of Oceanology and Limnology, Vol. 29, No. 4, pp. 807-831. https://doi.org/10.1007/s00343-011-0510-z
  23. Herdman, E. C.(1924), Notes on dinoflagellates and other organisms causing discolouration of the sand at Port Erin. 4. In Trans, Liverpool Biol. Soc, Vol. 38, pp. 75-84.
  24. Hung, C. C., C. C. Chung, G. C. Gong, S. Jan, Y. Tsai, K. S. Chen, K. S. Chou, M. A. Lee, Y. Chang, M. H. Chen, W. R. Yang, C. J. Tseng, and G. Gawarkiewicz(2013), Nutrient supply in the southern East China Sea after typhoon Morakot. Journal of Marine Research, Vol. 71, No. 1-2, pp. 133-149. https://doi.org/10.1357/002224013807343425
  25. Hu, Y., W. Shao, Y. Wei, and J. Zuo(2020), Analysis of typhoon-induced waves along typhoon tracks in the Western North Pacific Ocean, 1998-2017, Journal of Marine Science and Engineering, Vol. 8, No. 7, p. 521. https://doi.org/10.3390/jmse8070521
  26. Ichikawa, H. and R. C. Beardsley(2002), The current system in the Yellow and East China Seas, Journal of Oceanography, Vol 58, No. 1, pp. 77-92. https://doi.org/10.1023/A:1015876701363
  27. Isobe, A.(2008), Recent advances in ocean-circulation research on the Yellow Sea and East China Sea shelves, Journal of Oceanography, Vol. 64, No. 4, pp. 569-584. https://doi.org/10.1007/s10872-008-0048-7
  28. Jakobsen, H. H. and J. Carstensen(2011), FlowCAM: sizing cells and understanding the impact of size distributions on biovolume of planktonic community structure, Aquatic Microbial Ecology, Vol. 65, No. 1, pp. 75-87. https://doi.org/10.3354/ame01539
  29. Jiang, Z., J. Chen, F. Zhou, L. Shou, Q. Chen, B. Tao, Y. Xiaojun, and K. Wang(2015), Controlling factors of summer phytoplankton community in the Changjiang (Yangtze River) Estuary and adjacent East China Sea shelf, Continental Shelf Research, Vol. 101, pp. 71-84. https://doi.org/10.1016/j.csr.2015.04.009
  30. Johnson, Z. I., E. R. Zinser, A. Coe, N. P. McNulty, E. M. S. Woodward, and S. W. Chisholm(2006), Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients, Science, Vol. 311, No. 5768, pp. 1737-1740. https://doi.org/10.1126/science.1118052
  31. Kang, J. H.(2020), Observation of items fed by Noctiluca scintillans around Dokdo in spring, The Sea, Vol. 25, No. 4, pp. 160-172. https://doi.org/10.7850/JKSO.2020.25.4.160
  32. Kim, H. C., H. Yamaguchi, S. Yoo, J. Zhu, K. Okamura, Y. Kiyomoto, K. Tanaka, S. Kim, and J. Ishizaka(2009), Distribution of Changjiang diluted water detected by satellite chlorophyll-a and its interannual variation during 1998-2007, Journal of Oceanography, Vol. 65, No. 1, pp. 129-135. https://doi.org/10.1007/s10872-009-0013-0
  33. Kim, Y., S. H. Youn, H. J. Oh, J. J. Kang, J. H. Lee, D. Lee, K. Kim, H. K. Jang, J. Lee, and S. H. Lee(2020), Spatiotemporal Variation in Phytoplankton Community Driven by Environmental Factors in the Northern East China Sea, Water, Vol. 12, No. 10, p. 2695. https://doi.org/10.3390/w12102695
  34. Kitatsuji, S., H. Yamaguchi, T. Asahi, K. Ichimi, G. Onitsuka, and K. Tada(2019), Does Noctiluca scintillans end the diatom bloom in coastal water?, Journal of Experimental Marine Biology and Ecology, Vol. 510, pp. 10-14. https://doi.org/10.1016/j.jembe.2018.09.006
  35. Lee, Y., E. J. Yang, S. Youn, and J. K. Choi(2018), Influence of the Changjiang diluted waters on the nanophytoplankton distribution in the northern East China Sea, Journal of the Marine Biological Association of the United Kingdom, Vol. 98, No. 7, pp. 1535-1545. https://doi.org/10.1017/S0025315417001163
  36. Lefevre, F., C. Le Provost, and F. H. Lyard(2000), How can we improve a global ocean tide model at a regional scale? A test on the Yellow Sea and the East China Sea, Journal of Geophysical Research: Oceans, Vol. 105, No. C4, pp. 8707-8725. https://doi.org/10.1029/1999JC900281
  37. Lepere, C., D. Vaulot, and D. J. Scanlan(2009), Photosynthetic picoeukaryote community structure in the South East Pacific Ocean encompassing the most oligotrophic waters on Earth, Environmental microbiology, Vol. 11, No. 12, pp. 3105-3117. https://doi.org/10.1111/j.1462-2920.2009.02015.x
  38. Li, M., K. Xu, M. Watanabe, and Z. Chen(2007), Long-term variations in dissolved silicate, nitrogen, and phosphorus flux from the Yangtze River into the East China Sea and impacts on estuarine ecosystem, Estuarine, Coastal and Shelf Science, Vol. 71, No. 1-2, pp. 3-12. https://doi.org/10.1016/j.ecss.2006.08.013
  39. Lie, H. J., C. H. Cho, J. H. Lee, and S. Lee(2003), Structure and eastward extension of the Changjiang River plume in the East China Sea, Journal of Geophysical Research: Oceans, Vol. 108, No. C3.
  40. Liu, G., X. Li, J. Wang, Y. Kou, and X. Wang(2020), Research on the statistical characteristics of typhoon frequency, Ocean Engineering, Vol. 209, No. 107489. https://doi.org/10.1016/j.oceaneng.2020.107489
  41. Liu, S. M., X. H. Qi, X. Li, H. R. Ye, Y. Wu, J. L. Ren, J. Zhang, and W. Y. Xu(2016), Nutrient dynamics from the Changjiang (Yangtze River) estuary to the East China Sea, Journal of Marine Systems, Vol. 154, pp. 15-27. https://doi.org/10.1016/j.jmarsys.2015.05.010
  42. Marie, D., N. Simon, L. Guillou, F. Partensky, and D. Vaulot (2000), Flow cytometry analysis of marine picoplankton, In Living Color, pp. 421-454.
  43. Mella-Flores, D., S. Mazard, F. Humily, F. Partensky, F. Mahe, L. Bariat, C. Courties, D. Marie, J. Ras, and L. Garczarek(2011), Is the distribution of Prochlorococcus and Synechococcus ecotypes in the Mediterranean Sea affected by global warming?, Biogeosciences, Vol. 8, No. 9, pp. 2785-2804. https://doi.org/10.5194/bg-8-2785-2011
  44. Miyaguchi, H., Fujiki, T., Kikuchi, T., Kuwahara, V. S., and Toda, T.(2006), Relationship between the bloom of Noctiluca scintillans and environmental factors in the coastal waters of Sagami Bay, Japan, Journal of Plankton Research, Vol. 28, No. 3, pp. 313-324. https://doi.org/10.1093/plankt/fbi127
  45. Moutier, W., L. Duforet-Gaurier, M. Thyssen, H. Loisel, X. Meriaux, L. Courcot, D. Dessailly, A. Reve, G. Gregori, and M. Dugenne(2017), Evolution of the scattering properties of phytoplankton cells from flow cytometry measurements, PLoS One, Vol. 12, No. 7, p. e0181180. https://doi.org/10.1371/journal.pone.0181180
  46. Not, F., M. Latasa, R. Scharek, M. Viprey, P. Karleskind, V. Balague, I. Ontoria-Oviedo, A. Cumino, E. Goetze, and R. Massana(2008), Protistan assemblages across the Indian Ocean, with a specific emphasis on the picoeukaryotes, Deep Sea Research Part I: Oceanographic Research Papers, Vol. 55, No. 11, pp. 1456-1473. https://doi.org/10.1016/j.dsr.2008.06.007
  47. Padmakumar, K. B., G. SreeRenjima, C. L. Fanimol, N. R. Menon, and V. N. Sanjeevan(2010), Preponderance of heterotrophic Noctiluca scintillans during a multi-species diatom bloom along the southwest coast of India, International Journal of Oceans and Oceanography, Vol. 4, No. 1, pp. 55-63.
  48. Pei, S., Z. Shen, and E. A. Laws(2009), Nutrient dynamics in the upwelling area of Changjiang (Yangtze River) estuary, Journal of Coastal Research, Vol. 25, No. 3, pp. 569-580. https://doi.org/10.2112/07-0948.1
  49. Phinney, D. A. and T. L. Cucci(1989), Flow cytometry and phytoplankton, Cytometry: The Journal of the International Society for Analytical Cytology, Vol. 10, No. 5, pp. 511-521. https://doi.org/10.1002/cyto.990100506
  50. Qingshan, L., S. Jun, S. Zhiliang, S. Shuqun, and W. Min (2006), Phytoplankton assemblage of Yangtze River Estuary and the adjacent East China Sea in summer, 2004, Journal of Ocean University of China, Vol. 5, No. 2, pp. 123-131. https://doi.org/10.1007/BF02919210
  51. Shim, J. H.(1994), Illustrated encyclopedia of fauna and flora of Korea, vol. 34 Marine phytoplankton. Ministry of Education, Korea (in Korean).
  52. Sohm, J. A., N. A. Ahlgren, Z. J. Thomson, C. Williams, J. W. Moffett, M. A. Saito, E. A. Webb, G. and Rocap(2016), Co-occurring Synechococcus ecotypes occupy four major oceanic regimes defined by temperature, macronutrients and iron, The ISME Journal, Vol. 10, No. 2, pp. 333-345. https://doi.org/10.1038/ismej.2015.115
  53. Somerville, C. C., I. T. Knight, W. L. Straube, and R. R. Colwell(1989), Simple, rapid method for direct isolation of nucleic acids from aquatic environments, Applied and environmental microbiology, Vol. 55, No. 3, pp. 548-554. https://doi.org/10.1128/aem.55.3.548-554.1989
  54. Song, S., Z. Li, C. Li, and Z. Yu(2017), The response of spring phytoplankton assemblage to diluted water and upwelling in the eutrophic Changjiang (Yangtze River) Estuary, Acta Oceanologica Sinica, Vol. 36, No. 12, pp. 101-110. https://doi.org/10.1007/s13131-017-1094-z
  55. Sun, X., F. Shen, D. Liu, R. G. Bellerby, Y. Liu, and R. Tang(2018), In situ and satellite observations of phytoplankton size classes in the entire continental shelf sea, China, Journal of Geophysical Research: Oceans, Vol. 123, No. 5, pp. 3523-3544. https://doi.org/10.1029/2017jc013651
  56. Tada, K., S. Pithakpol, R. Yano, and S. Montani(2000), Carbon and nitrogen content of Noctiluca scintillans in the Seto Inland Sea, Japan, Journal of plankton research, Vol. 22, No. 6, pp. 1203-1211. https://doi.org/10.1093/plankt/22.6.1203
  57. Tomas, C. R.(1997), Identifying marine phytoplankton, Elsevier.
  58. Wageman, J. M., T. W. Hilde, and K. O. Emery(1970), Structural framework of East China Sea and Yellow Sea, AAPG Bulletin, Vol. 54, No. 9, pp. 1611-1643.
  59. Wang, B.(2006), Cultural eutrophication in the Changjiang (Yangtze River) plume: History and perspective, Estuarine, Coastal and Shelf Science, Vol. 69, No. 3-4, pp. 471-477. https://doi.org/10.1016/j.ecss.2006.05.010
  60. Wang, F., Y. Xie, W. Wu, P. Sun, L. Wang, and B. Huang(2019), Picoeukaryotic diversity and activity in the northwestern Pacific Ocean based on rDNA and rRNA high-throughput sequencing, Frontiers in microbiology, Vol. 9, Article 3259.
  61. Wei, K., C. Ouyang, H. Duan, Y. Li, M. Chen, J. Ma, H. An, and S. Zhou(2020), Reflections on the catastrophic 2020 Yangtze River Basin flooding in southern China, The Innovation, Vol. 1, No. 2.
  62. Yoon, Y. H.(2003), Spatial distribution of phytoplankton community and red tide of dinoflagellate, Prorocentrum donghaience in the East China Sea during early summer, Korean J Environ Biol, Vol. 21, pp. 132-141.
  63. Yoon, Y. H., J. S. Park, H. Y. Soh, and D. J. Hwang(2005), On the marine environment and distribution of phytoplankton community in the northern East China Sea in early summer 2004, Journal of the Korean Society for Marine Environment & Energy, Vol. 8, No. 2, pp. 100-110.
  64. Zhao, Y., R. C. Yu, F. Z. Kong, C. J. Wei, Z. Liu, H. X. Geng, L. D. Zheng, Q. C. Zhang, and M. J. Zhou(2019), Distribution patterns of picosized and nanosized phytoplankton assemblages in the East China Sea and the Yellow Sea: implications on the impacts of Kuroshio intrusion, Journal of Geophysical Research: Oceans, Vol. 124, No. 2, pp. 1262-1276. https://doi.org/10.1029/2018JC014681
  65. Zhou, M. J., Z. L. Shen, and R. C. Yu(2008), Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River, Continental Shelf Research, Vol. 28, No. 12, pp. 1483-1489. https://doi.org/10.1016/j.csr.2007.02.009
  66. Zhou, W., K. Yin, A. Long, H. Huang, L. Huang, and D. Zhu (2012), Spatial-temporal variability of total and size-fractionated phytoplankton biomass in the Yangtze River Estuary and adjacent East China Sea coastal waters, China, Aquatic Ecosystem Health & Management, Vol. 15, No. 2, pp. 200-209. https://doi.org/10.1080/14634988.2012.688727
  67. Zwirglmaier, K., L. Jardillier, M. Ostrowski, S. Mazard, L. Garczarek, D. Vaulot, F. Not, R. Massama, O. Ulloa, and D. J. Scanlan(2008), Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes, Environmental microbiology, Vol. 10, No. 1, pp. 147-161. https://doi.org/10.1111/j.1462-2920.2007.01440.x