DOI QR코드

DOI QR Code

Changes in Benthic Polychaete Community after Fish Farm Relocation in the South Coast of Korea

어류양식장 이전 후 저서다모류 군집 변화

  • Park, Sohyun (Marine Environment Research Division, National Institute of Fisheries Science) ;
  • Kim, Sunyoung (Marine Environment Research Division, National Institute of Fisheries Science) ;
  • Sim, Bo-Ram (Fisheries Resources and Environment Research Division, National Institute of Fisheries Science) ;
  • Park, Se-jin (Marine Environment Research Division, National Institute of Fisheries Science) ;
  • Kim, Hyung Chul (Research and Development Planning Division, National Institute of Fisheries Science) ;
  • Yoon, Sang-Pil (Marine Environment Research Division, National Institute of Fisheries Science)
  • 박소현 (국립수산과학원 어장환경과) ;
  • 김선영 (국립수산과학원 어장환경과) ;
  • 심보람 (국립수산과학원 자원환경과) ;
  • 박세진 (국립수산과학원 어장환경과) ;
  • 김형철 (국립수산과학원 연구기획과) ;
  • 윤상필 (국립수산과학원 어장환경과)
  • Received : 2021.11.23
  • Accepted : 2021.12.28
  • Published : 2021.12.31

Abstract

The purpose of this study is to investigate sediment recovery after the relocation of fish cage farms, by examining the changes in sediments and the benthic polychaete community. A preliminary survey was carried out in October 2017, before the relocation of the farms, and monthly surveys were conducted from November 2017 to October 2018 after the farms were moved. Subsequently, it was conducted every 2-3 months until October 2020. The survey was carried out at three stations (Farm1-3) at the location of the removed fish farms and at three control stations (Con1-3) without farms. The overall organic carbon content of the farm stations was higher than the control stations, but it gradually decreased after the farm was demolished, and there was no statistically significant difference about one year after the relocation of the farms (p<0.05). In the benthic polychaete community, abiotic community appeared at the farm stations in the summer, and consequently, the community transitioned to a low-diversity region with the predominant species Capitella capitata, which is an indicator of pollution. Until the abiotic period in the summer of the next year, the species diversity increased and the proportion of indicator species decreased, showing a tendency of recovering the benthic polychaete community, and these changes were repeated every year. In this study, the abiotic community appeared every year owing to the topographical characteristics, but as the survey progressed, the period of abiotic occurrence became shorter and the process of community recovery progressed expeditiously. Biological recovery of sediments after the relocation of the fish farms is still in progress, and it is imperative to study recovery trends through continuous monitoring.

본 연구에서는 어류가두리양식장 시설의 재배치 이후 기존 양식장 아래 퇴적물의 회복상태를 규명하고자 하였으며, 이를 위하여 양식장 아래 퇴적물과 저서다모류 군집 조사를 수행하였다. 양식장 철거 이전인 2017년 10월에 사전 조사를 수행하였으며, 양식장 철거 이후인 2017년 11월부터 2018년 10월까지는 매달, 이후 2020년 10월까지는 2 ~ 3달 간격으로 조사하였다. 조사 정점은 철거된 양식장 위치에 3개 정점(Farm1 ~ 3)과 양식시설물이 없는 주변 해역에 3개의 대조 정점(Con1 ~ 3)으로 선정하였다. 사전 조사에서 기존 양식장의 총유기탄소(평균 22.67 mg·g-1 dry weight)는 대조 정점(평균 13.68 mg·g-1 dry weight)보다 높았으나, 양식장 철거 이후 점차 감소하여 약 1년 이후에는 통계적으로 유의한 차이를 보이지 않았다(p<0.05). 저서다모류 군집은 여름철 기존 정점에서 무생물 군집이 출현하였으며, 무생물 시기 이후 오염지시종인 Capitella capitata 단일종이 극우점하는 낮은 다양도의 군집으로 천이하였다. 다음해 여름철 무생물 시기 이전까지 종다양도가 증가하고 오염지시종의 비율이 감소하여 저서다모류 군집이 회복되는 경향을 나타내었으며, 이러한 변화는 매년 반복되었다. 연구 지역은 양식장 아래의 지형학적인 특성으로 인하여 매년 무생물 군집이 출현하고 있으나, 조사가 진행될수록 무생물 발생 기간은 짧아지고, 군집이 회복되는 과정은 빠르게 진행되었다. 어류 양식장의 이전 후 기존 양식장 정점의 퇴적물은 생물학적인 회복이 여전히 진행 중이며, 추가적인 모니터링을 통해 회복의 경향을 연구할 필요가 있다.

Keywords

Acknowledgement

이 논문의 완성도를 높이기 위해 세심하게 검토해 주신 익명의 심사위원분들께 감사드립니다. 이 논문은 2021년도 국립수산과학원 수산과학연구사업(R2021057)의 지원을 받아 수행된 연구입니다.

References

  1. Agudo-Gimenez, F., M. A. Piedecausa, J. M. Gutierrez, J. A. Garcia-Charton, A. Belmonte, and B. Garcia-Garcia(2012), Benthic recovery after fish farming cessation: a "beyond BACI" approach, Marine Pollution Bullutin, Vol. 64, pp. 729-738. https://doi.org/10.1016/j.marpolbul.2012.02.012
  2. Beveridge, M. C. M.(1987), Cage aquaculture, Fishing News Books.
  3. Black, K D., P. K. Hansen, and M. Holmer(2008), Salmon aquaculture dialogue, Working group report on benthic impacts and farm siting, pp. 1-54
  4. Black, K. D.(2001), Environmental Impacts of Aquaculture. Sheffield Academic Press Ltd., UK.
  5. Brooks, K. M.., A. R. Stierns, and D. Backman(2004), Seven year remediation study at the Carrie Bay Atlantic salmon(Salmo salar) farm in the Broughton Archipelago, British Columbia, Canada. Aquaculture, Vol. 239(1-4), pp. 81-123. https://doi.org/10.1016/j.aquaculture.2003.12.024
  6. Brooks, K. M., A. R. Stierns, C. V. W. Mahnken, and D. B. Blackburn(2003), Chemical and biological remediation of the benthos near Atlantic salmon farms, Aquaculture Vol. 219, pp. 355-377. https://doi.org/10.1016/S0044-8486(02)00528-8
  7. Gao, Q. F., K. K. Cheung, S. G. Cheung, and P. K. S. Shin(2005), Effects of nutrient enrichment derived from fish farming activities on macroinvertebrate assemblages in a subtropical region of Hong Kong. Mar. Pollut. Bull. Vol. 51, pp. 994-1002. https://doi.org/10.1016/j.marpolbul.2005.01.009
  8. Gowen, R. J. and N. B, Bradbury(1987), The ecological impact of salmonid farming in coastal waters: a review. Oceanogr. Mar. Biol. Annu. Rev, Vol. 25, pp. 563-575.
  9. Gower, J. C.(1966), Some distance properties of latent root and vector methods used in multivariate analysis, Biometrika, Vol. 53(3-4), pp. 325-338. https://doi.org/10.2307/2333639
  10. Hall, P. O., L. G. Anderson, O. Holby, S. Kollberg, and M. O. Samuelsson(1990), Chemical fluxes and mass balances in a marine fish cage farm: I. Carbon. Marine Ecology Progress Series, Vol. 61, pp. 61-73. https://doi.org/10.3354/meps061061
  11. Huang, Y. C. A., S. C. Huang, H. J. Hsieh, P. J. Meng, and C. A. Chen(2012), Changes in sedimentation, sediment characteristics, and benthic macrofaunal assemblages around marine cage culture under seasonal monsoon scales in a shallow-water bay in Taiwan, J. Exp. Mar. Biol. Ecol, Vol. 422, pp. 55-63. https://doi.org/10.1016/j.jembe.2012.04.008
  12. Johannessen, P. J., H. B. Botnen, and O. F. Tvedten(1994), Macrobenthos: before, during and after a fish farm. Aquaculture Research, Vol. 25, pp. 55-66. https://doi.org/10.1111/j.1365-2109.1994.tb00666.x
  13. Jung, R. H., S. P. Yoon, J. N. Kwon, J. S. Lee, W. C. Lee, J. H. Koo, Y. J. Kim, H. T. Oh, S. J. Hong, and S. E. Park(2007), Impact of fish farming in macrobenthic polychaete communities, Journal of the Korean Society of Oceanography, Vol. 12(3), pp. 159-169.
  14. Karakassis I., E. Hatziyanni, M. Tsapakis, and W. Plaiti(1999), Benthic recovery following cessation of fish farming: a series of successes and catastrophes, Marine Ecology Progress Series, Vol. 184, pp. 205-218. https://doi.org/10.3354/meps184205
  15. Karakassis, I., M. Tsapakis, E. Hatziyanni, K.N. Papadopoulou, and W. Plaiti(2000), Impact of cage farming of fish on the seabed in three Mediterranean coastal areas, ICES J. Mar. Sci. Vol. 57, pp. 1462-1471. https://doi.org/10.1006/jmsc.2000.0925
  16. Kutti, T., P. K. Hansen, A. Ervik, T. Hoisaeter, and P. Johannessen(2007), Effects of organic effluents from a salmon farm on a fjord system. II. Temporal and spatia patterns in infauna community composition, Aquaculture Vol. 262, pp. 355-366. https://doi.org/10.1016/j.aquaculture.2006.10.008
  17. Lee, H. W., J. H. Bailey-Brock, and M. M. McGurr(2006), Temporal changes in the polychaete infaunal community surrounding a Hawaiian mariculture operation, Mar. Ecol. Prog. Ser., Vol. 307, pp. 175-185. https://doi.org/10.3354/meps307175
  18. Liao Y., Q. Liu, L. Shou, Y. Tang, Q, Liu, J. Zeng, Q. Chen and X. Yan(2022), The impact of suspended oyster farming on macrobenthic community in a eutrophic, semi-closed bay: Implications for recovery potential, Aquaculture, Vol. 548.
  19. Lim, H. S. and J. S. Hong(1997), Ecology of the macrozoobenthos in Chinhae Bay, Korea, Journal of Fisheries and Aquatic Sciences, Vol. 30(2), pp. 175-187.
  20. Macleod, C. K., N. A. Moltschaniwskyj, and C. M. Crawford (2006), Evaluation of short-term fallowing as a strategy for the management of recurring organic enrichment under salmon cages, Marine Pollution Bulletin, Vol. 52, pp. 1458-1466. https://doi.org/10.1016/j.marpolbul.2006.05.007
  21. NIFS(National Institute of Fisheries Science)(2020), Http://www.nifs.go.kr.
  22. MOF(Ministry of Oceans and Fisheries)(2013), Korean Standard Method of Examination for Marine Environment. Sejong-si, Korea, pp. 1-516.
  23. Norkko, A., R. Rosenberg, S. F. Thrush, and R. B. Whitlatch (2006), Scale-and intensity-dependent disturbance determines the magnitude of opportunistic response, Journal of Excremental Marine Biology and Ecology, Vol. 330, pp. 195-207. https://doi.org/10.1016/j.jembe.2005.12.027
  24. Park, S., S. Kim, B. R. Sim, S. J. Park, H. C. Kim and, S. P. Yoon(2021), Changes in the community structure of benthic polychaetes after the shellfish farm cessation in Tongyeong bay of Korea, Journal of the Korean Society of Marine Environment and Safety, Vol. 27(5), pp. 605-617. https://doi.org/10.7837/kosomes.2021.27.5.605
  25. Pearson, T. H. and R. Rosenberg(1978), Macrobenthic succession in relation to organic enrichment and pollution of the marine environment, Oceanography Marine Biology Annual Review, Vol. 16, pp. 229-311.
  26. Pereira, P. M., K. D. Black, D. S. McLusky, and T. D. Nickell(2004), Recovery of sediments after cessation of marine fish farm production, Aquaculture, Vol. 235(1-4), pp. 315-330. https://doi.org/10.1016/j.aquaculture.2003.12.023
  27. Pohle, G., B. Frost, and R. Findlay(2001), Assessment of regional benthic impact of salmon mariculture within the Letang Inlet, Bay of Fundy. ICES Journal of Marine Science, Vol. 58(2), pp. 417-426. https://doi.org/10.1006/jmsc.2000.1039
  28. Seo, J. Y., H. S. Lim, and J. W. Choi(2015), Spatio-temporal distribution of macrobenthic communities in Jinhae bay, Korea, Ocean and polar Research, Vol. 37(4), pp. 295-315. https://doi.org/10.4217/OPR.2015.37.4.295
  29. Shannon, C. E. and W. Weaver(1963), The mathematical theory of communications, University of Illinois Press, Urbana, pp. 1-125.
  30. Sim, B. R., H. C. Kim, S. Kang, D. I. Lee, S. Hong, S. H. Lee, and Y. Kim(2020), Geochemical indicators for the recovery of sediment quality after the abandonment of oyster Crassostrea gigas farming in South Korea, Korean Journal of Fisheries and Aquatic sciences, Vol. 53(5), pp. 773-783. https://doi.org/10.5657/KFAS.2020.0773
  31. Tomassetti, P., E. Persia, I. Mercatali, D. Vani, V. Marussso, and S. Porrello(2009), Effects of mariculture on macrobenthic assemblages in a western Mediterranean site, Mar. Pollut. Bull., Vol. 58, pp. 533-541. https://doi.org/10.1016/j.marpolbul.2008.11.027
  32. Zhulay, I., K. Reiss and H. Reiss(2015), Effects of aquaculture fallowing on the recovery of macrofauna communities, Mar. Pollut. Bull., Vol. 97(1-2), pp. 381-390. https://doi.org/10.1016/j.marpolbul.2015.05.064