DOI QR코드

DOI QR Code

내부열교환기와 TXV를 적용한 자동차용 공조시스템의 성능에 관한 수치적 연구

Simulation on the performance of an automobile climate control system with Internal heat exchanger and TXV

  • 박차식 (호서대학교 기계자동차공학부)
  • Park, Cha-Sik (Division of Mechanical and Automotive Engineering, Hoseo University)
  • 투고 : 2020.09.14
  • 심사 : 2021.01.08
  • 발행 : 2021.01.31

초록

최근에 지구온난화 문제로 인하여 자동차 공조시스템은 GWP 지수가 높은 R134a 냉매를 대체할 수 있는 대체 냉매를 적용하고 있다. 본 연구에서는 R1234yf 냉매를 사용하여 내부열교환기와 가면용량형 팽창밸브인 TXV를 적용한 자동차 공조시스템의 성능특성을 해석하였다. 상용 소프트웨어인 Amesim을 이용하여 주요 부품인 압축기, 응축기, 팽창장치, 증발기와 내부열교환기를 모델링을 하여 외기온도와 응축기 휜 피치 변화에 따른 냉동사이클 시뮬레이션을 수행하였다. 외기온도가 30℃에서 40℃로 증가함에 따라 시스템의 냉방용량은 3.1% 감소하고, 압축기 소비동력은 17.1% 증가하였다. 또한, 응축기의 휜 피치를 0.8 mm에서 1.4 mm로 증가시키면서, 사이클 성능특성을 해석하였다. 휜 피치가 1.0 mm 클 경우에 응축기의 방열량은 감소하였고, COP는 5.9% 까지 감소하였다. 응축기 휜 피치가 1.0 mm 보다 작은 0.8 mm에서는 시스템 성능에 큰 변화가 없어 휜 피치 1.0 mm에서 최적의 성능을 나타내는 것으로 분석되었다.

Recently, automobile air conditioning systems have applied an alternative refrigerant that can replace the high GWP refrigerant R134a due to the global warming problem. This study simulated the performance of an automobile climate control system with an internal heat exchanger and TXV. Refrigerant R1234yf was applied as the working fluid. Amesim, a commercial software program, was used to model the main components of the compressor, condenser, TXV, evaporator, and internal heat exchanger. As the outside temperature increased from 30℃ to 40℃, the cooling capacity of the system decreased by 3.1%, and the power consumption of the compressor increased by 17.1%. In addition, The performance characteristics of the refrigeration cycle were simulated by increasing the fin pitch of the condenser from 0.8 mm to 1.4 mm. When the fin pitch was larger than 1.0 mm, the condenser capacity decreased, and the system COP was lowered by 5.9%. When the fin pitch of the condenser was 0.8 mm, which was smaller than 1.0 mm, there was no significant change in the system performance. Hence, the optimal performance was observed at a fin pitch of 1.0 mm.

키워드

참고문헌

  1. Global Environmental Change Report, "A Brief Analysis of the Kyoto Protocol", Vol.4, No.24, Dec. 1997.
  2. M. Koban, "HFO-1234yf low GWP refrigerant LCCP analysis", Proceedings of SAE world congress, Detroit, USA, 2009
  3. H. Hermann, R. Rene, "CO2 as Refrigerant-Possible Applications", 4th IIR-Gustav Lorentzen Conference, pp.43-50. 2000.
  4. A. Hanfner, "Experimental Study on Heat Pump Operation of Protype CO2 Mobile Air Conditioning System", 4th IIR-Gustav Lorentzen Conference, pp.177-184. 2000.
  5. H. Cho, C. Ryu, Y. Kim, "Experiment -al Study on the Cooling Performance of a CO2 Cycle with Internal Heat Exchanger", Proceedings of the SAREK '2004 Winter Annual Conference, pp.554-559, 2004.
  6. H. Cho, H. Lee, C. Park, "Study on the performance improvement for an automobile air conditioning system using alternative refrigerant R1234yf", Korea Journal of Air-Conditioning and Refrigeration Engineering, Vol.25, No.4, pp.201-207, 2013. DOI: https://doi.org/10.6110/KJACR.2013.25.4.201
  7. G. Pottker, P. Hrnkak, "Effect of the condenser subcooling on the performance of vapor compression systems", International Journal of Refrigeration, Vol.50, pp.156-164, 2015. DOI: https://doi.org/10.1016/j.ijrefrig.2014.11.003
  8. A. Mackensen, S. Klein, D. Reindl, "Characterization of refrigerant system compressor performacne", International Refrigeration and Air Conditioning Conference, Purdue, 2002.
  9. J. Dong, J. Chen, Z. Chen, W. Zhang, Y. Zhou, "Heat transfer and pressure drop correlations for the multi-louvered fin compact heat exchangers", Energy Conversion and Management, Vol.48, pp.15066-1515, 2007. DOI: https://doi.org/10.1016/j.enconman.2006.11.023