DOI QR코드

DOI QR Code

Functional screening of Asparagus officinalis L. stem and root extracts

아스파라거스 줄기 및 뿌리 추출물의 기능성 검증

  • Han, Joon-Hee (Department of Research and Development, Chuncheon Bioindustry Foundation) ;
  • Hong, Min (Department of Research and Development, Chuncheon Bioindustry Foundation) ;
  • Lee, Jaehak (Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University) ;
  • Choi, Da-Hye (Department of Research and Development, Chuncheon Bioindustry Foundation) ;
  • Lee, Sun-Yeop (Department of Research and Development, Chuncheon Bioindustry Foundation) ;
  • Kwon, Tae-Hyung (Department of Research and Development, Chuncheon Bioindustry Foundation) ;
  • Lee, Jae-Hee (Agro-food Research Institute, Gangwondo Agricultural Research and Extension Services (ARES)) ;
  • Lee, Yong-Jin (Department of Research and Development, Chuncheon Bioindustry Foundation) ;
  • Yu, Keun-Hyung (Department of Research and Development, Chuncheon Bioindustry Foundation)
  • 한준희 ((재)춘천바이오산업진흥원 기술개발실) ;
  • 홍민 ((재)춘천바이오산업진흥원 기술개발실) ;
  • 이재학 (강원대학교 동물생명과학대학 동물식품응용학과) ;
  • 최다혜 ((재)춘천바이오산업진흥원 기술개발실) ;
  • 이선엽 ((재)춘천바이오산업진흥원 기술개발실) ;
  • 권태형 ((재)춘천바이오산업진흥원 기술개발실) ;
  • 이재희 (강원도농업기술원 농식품연구소) ;
  • 이용진 ((재)춘천바이오산업진흥원 기술개발실) ;
  • 유근형 ((재)춘천바이오산업진흥원 기술개발실)
  • Received : 2020.12.03
  • Accepted : 2020.12.16
  • Published : 2021.02.28

Abstract

The biological activities of non-edible extracts of asparagus stems and roots were investigated using hot water and ethanol. The highest contents of rutin and total polyphenol were 31.74 mg/g and 20.14 mg GAE/g, respectively, in the stem hot water extract. ABTS and DPPH radical scavenging activities were 541.1±21.0 and 649.5±6.6 ㎍/mL, respectively, in stem hot water extract. All extracts were non-cytotoxic in HepG2 cells, but 200 ㎍/mL stem extracts tended to decrease the viability of RAW 264.7 cells. The highest xanthine oxidase inhibitory activity was 43.68% in the root hot water extract at 200 ㎍/mL. The expression level of MMP-9 was significantly decreased in the asparagus extracts. The highest GGT, AST, and LDH activities showed a concentration-dependent decrease in the stem ethanol extract. In conclusion, the presence of bioactive substances in the non-edible extracts of asparagus was confirmed for the development of extracts with antioxidant, hepatoprotective and anti-gout activities.

본 연구에서는 아스파라거스 부산물인 줄기와 뿌리 추출물의 루틴 및 총폴리페놀 함량, DPPH 및 ABTS radical 소거능, xanthine oxidase 및 MMP-9 저해활성, 간세포 보호효과를 분석하였다. 루틴과 총폴리페놀 함량은 아스파라거스 줄기 열수 추출물 31.74 mg/g과 20.14 mg GAE/g으로 가장 많았으며, ABTS radical 및 DPPH radical 소거능은 페놀성 화합물의 함량이 상대적으로 높은 줄기 열수 추출물에서 IC50 값이 각각 541.1±21.0, 649.5±6.6 ㎍/mL이였으며, 아스파라거스 추출물에 존재하는 페놀성 화합물과 radical 소거능과의 연관성을 시사하였다. Xanthine oxidase 저해활성은 아스파라거스 뿌리 열수추출물이 200 ㎍/mL 농도에서 43.68%의 저해활성을 보였다. HepG2 간세포는 아스파라거스 모든 추출물에서 세포독성이 없는 것으로 나타났으나, RAW 264.7 대식세포의 경우 아스파라거스 줄기 열수 및 20% 에탄올 추출물 200 ㎍/mL 농도에서 각각 90.18, 84.14%로 생존률이 유의하게 감소하는 것으로 나타났다. MMP-9 발현량은 아스파라거스 추출물 처리구에서 전반적으로 감소하였고, 특히 줄기 추출물 처리구에서 MSU 처리구와 비교하여 유의하게 감소하는 경향을 보였다. HepG2 간세포에 3% 에탄올을 처리하여 간독성을 유발하여 GGT, AST 및 LDH 활성을 측정한 결과 아스파라거스 줄기 20% 에탄올 추출물이 가장 우수한 것으로 나타났다. 이 결과를 토대로 아스파라거스 줄기 및 뿌리는 총 폴리페놀과 루틴이 다량 함유되어 있어 생리활성 소재로써 개발 가치가 높을 것으로 판단되며, 추가적인 in vivo 생리활성평가를 통해 활용방안 모색이 필요할 것으로 판단된다.

Keywords

References

  1. Al-Snafi AE. The pharmacologycal importance of Asparagus officinalis-A review. J. Pharm. Biol. 5: 93-98 (2015)
  2. Blois MS. Antioxidant activity determination by the use of a stable free radical. Nature 181: 1199-1200 (1958) https://doi.org/10.1038/1811199a0
  3. Chitrakar B, Zhang M, Adhikari B. Asparagus (Asparagus officinalis): Processing effect on nutritional and phytochemical composition of spear and hard-stem byproducts. Trends Food Sci. Technol. 93: 1-11 (2019) https://doi.org/10.1016/j.tifs.2019.08.020
  4. Fan R, Yuan F, Wang N, Gao Y, Huang Y. Extraction and analysis of antioxidant compounds from the residues of Asparagus officinalis L. J. Food Sci. Technol. 52: 2690-2700 (2015) https://doi.org/10.1007/s13197-014-1360-4
  5. Fanasca, Rouphael Y, Venneria E, Azzini E, Durazzo A, Maiani G. Antioxidant properties of raw and cooked spears of green asparagus cultivars. Intl. J. Food Sci. Technol. 44: 1017-1023 (2009) https://doi.org/10.1111/j.1365-2621.2008.01871.x
  6. Folin AD, Denis W. A colorimetric method for the determination of phenols (and phenol derivatives) in urine. J. Biol. Chem. 22: 305-308 (1915) https://doi.org/10.1016/S0021-9258(18)87648-7
  7. Fusi F, Saponara S, Pessina F, Gorelli B, Sgaragli G. Effects of quercetin and rutin on vascular preparations: a comparison between mechanical and electrophysiological phenomena. Eur. J. Nutr. 42:10-17 (2003) https://doi.org/10.1007/s00394-003-0395-5
  8. Garcia, MD, De la Puerta R, Saenz MT, Marquez-Martin, A, Fernandez-Arche M. Hypocholesterolemic and hepatoprotective effects of "Triguero" Asparagus from Andalusia in rats fed a high cholesterol diet. Evid-Based Compl. Alt. Med. 2012: 814752 (2012) https://doi.org/10.1155/2012/814752
  9. Grant MH, Duthie SJ, Gray AG, Burke MD. Mixed function oxidase and UDP-glucuronyltransferase activities in the human Hep G2 hepatoma cell line. Biochem. Pharmacol. 37: 4111-4116 (1988) https://doi.org/10.1016/0006-2952(88)90103-7
  10. Hartung AC, Nair MG, Putnam AR. Isolation and characterization of phytotoxic compounds from asparagus (Asparagus officinalis L.) roots. J. Chem. Ecol. 16: 1707-1718 (1990) https://doi.org/10.1007/BF01014102
  11. Hsieh MS, Ho HC, Chou DT, Pan S, Liang YC, Hsieh TY, Lan JL, Tsai SH. Expression of matrix metalloproteinase-9 (gelatinase B) in gouty arthritis and stimulation of MMP-9 by urate crystals in macrophages. J. Cell Biochem. 89: 791-799 (2003) https://doi.org/10.1002/jcb.10530
  12. Huang X, Kong L. Steroidal saponins from roots of Asparagus officinalis. Steroids. 71: 171-176 (2006) https://doi.org/10.1016/j.steroids.2005.09.005
  13. Huang ZS, Wang ZW, Liu MP, Zhong SQ, Li QM, Rong XL. Protective effects of polydatin against CCl4-induced injury to primarily cultured rat Hepatocytes. World J. Gastroenterol. 5: 41-44 (1999) https://doi.org/10.3748/wjg.v5.i1.41
  14. Hwang EK. Protective effect of rutin on carbon tetrachloride-induced acute hepatotoxicity in rats. J. Vet. Clin. 30: 12-16 (2013)
  15. Janbaz KH, Saeed SA, Gilani AH. Protective effect of rutin on paracetamol and CCl4 induced hepatotoxicity in rodents. Fitoterapia. 73: 557-563 (2002) https://doi.org/10.1016/S0367-326X(02)00217-4
  16. Jang DS, Cuendet M, Fong HHS, Pezzuto JM, Kinghorn AD. Constituents of Asparagus officinalis evaluated for inhibitory activity against cyclooxygenase-2. J. Agric. Food Chem. 52: 2218-2222 (2004) https://doi.org/10.1021/jf0305229
  17. Jung SJ, Chae SW. Effects of adherence to Korean diets on serum GGT and cardiovascular disease risk factors in patients with hypertension and diabetes. J. Nutr. Health Aging. 51: 386-399 (2018) https://doi.org/10.4163/jnh.2018.51.5.386
  18. Ji Y, Ji C, Yue L, Xu H. Saponins isolated from Asparagus induce apoptosis in human hepatoma cell line HepG2 through a mitochondrial-mediated pathway. Curr. Oncol. 19: 1-9 (2012)
  19. Kang O.H., Kim S.B., Seo Y.S., Joung D.K., Mun S.H., Choi J.G. Curcumin decreases oleic acid-induced lipid accumulation via AMPK phosphorylation in hepatocarcinoma cells. Eur. Rev. Med. Pharmaco. 17: 2578-2586 (2013)
  20. Kim, OK, Lee TG, Park YB, Park DC, Lee YW, Yeo SG, Kim IS, Park YH, Kim SB. Inhibition of xanthine oxidase by seaweed extracts. J. Korean Soc. Food Sci. Nutr. 25: 1069-1073 (1996)
  21. Kwon SB, Kwon HJ, Jeon SJ, Seo HT, KimHY, Lim JG, Park JS. Analysis of biological activities and functional components in different parts of asparagus. Korean J. Food Sci. Technol. 52: 67-74 (2020) https://doi.org/10.9721/KJFST.2020.52.1.67
  22. Lee JW, Lee JH, Yo IH, Gorinstein S, Bae JH, Ku YG. Bioactive compounds, antioxidant and binding activities and spear yield of Asparagus officinalis L. Plant Foods Hum. Nutr. 69: 175-181 (2014) https://doi.org/10.1007/s11130-014-0418-9
  23. Lee H, Park JY, Lee JJ. Protective effects of loquat (Eriobotrya japonica Lindl.) leaf extract on ethanol-induced liver damage in rats. Korean J. Community Living Sci. 28: 537-546 (2017) https://doi.org/10.7856/kjcls.2017.28.4.537
  24. Lee EJ, Yoo KS, Patil BS. Development of rapid HPLC-UV method for simultaneous quantification of protodioscin and rutin in white and green asparagus spears. J. Food Sci. 75: 705-709 (2010)
  25. Maeda T, Honda K, Sonoda T, Inoue K, Suzuki T, Oosawa K, Suzuki M. Light condition influences rutin and polyphenol contents in asparagus spears in the mother-fern culture system during the summer-autumn harvest. J. Japan. Soc. Hort. Sci. 79:161-167 (2010) https://doi.org/10.2503/jjshs1.79.161
  26. Maeda T, Kakuta H. Antioxidation capacities of extracts from green, purple, and white asparagus spears related to polyphenol concentration. HortScience. 40: 1221-1224 (2005) https://doi.org/10.21273/hortsci.40.5.1221
  27. Motoki S, Kitazawa H, Maeda T. Improving the yield of the purple asparagus cultivar 'Purple Passion' by high density planting. Acta Hortic. 950:117-124 (2012a) https://doi.org/10.17660/actahortic.2012.950.12
  28. Motoki S, Kitazawa H, Maeda T, Suzuki T, Chiji H, Nishihara E, Shinohara Y. Effects of various asparagus production methods on rutin and protodioscin contents in spears and cladophylls. Biosci. Biotech. Bioch. 76:1047-105 (2012b) https://doi.org/10.1271/bbb.120143
  29. Shimoyamada M, Suzuki M, Maruyama M, Watanabe K. An antifungal saponin from white asparagus (Asparagus officinalis L.) bottoms. J. Sci. Food Agric. 72: 430-434 (1996) https://doi.org/10.1002/(SICI)1097-0010(199612)72:4<430::AID-JSFA669>3.0.CO;2-L
  30. Shin YJ, Hwang JM, Lee SC. Antioxidant and xanthine oxidase inhibitory activities of hot water extracts of medicinal herbs. J. Korean Soc. Food Sci. Nutr. 42: 1712-1716 (2013) https://doi.org/10.3746/JKFN.2013.42.10.1712
  31. Stirpe F, Della Corte E. Lorenzoni, E. The regulation of rat liver xanthine oxidase: conversion in vitro of the enzyme activity from dehydrogenase (type D) to oxidase (type O). J. Biol. Chem. 244: 3855-3863 (1969) https://doi.org/10.1016/S0021-9258(17)36428-1
  32. Storch J, Ferber E. Detergent-amplified chemiluminescence of lucigenin for determination of superoxide anion production by NADPH oxidase and xanthine oxidase. Analytical Biochemistry. 169: 262-267 (1988) https://doi.org/10.1016/0003-2697(88)90283-7
  33. Sun T, Powers JR, Tang J. Evaluation of the antioxidant activity of asparagus, broccoli and their juices. Food Chem. 105: 101-106 (2007) https://doi.org/10.1016/j.foodchem.2007.03.048
  34. Sutaria S, Katbamna R, Underwood M. Effectiveness of interventions for the treatment of acute and prevention of recurrent gout-a systematic review. Rheumatology. 45: 1422-1431 (2006) https://doi.org/10.1093/rheumatology/kel071
  35. Tang XH, Gao J. Inhibitory effects of juice from Asparagus officinalis L. on cyclophosphamide (CTX)-induced mutagenic activities in mice. J. Nanjing Univ. (Nat. Sci.). 37: 569-573 (2001) https://doi.org/10.3321/j.issn:0469-5097.2001.05.007
  36. Tsushida T, Suzuki M, Kurogi M. Evaluation of antioxidant activity of vegetable extracts and determination of some active compounds. J. Japan Soc. Food Sci. Technol. 41: 611-618 (1994) https://doi.org/10.3136/nskkk1962.41.611
  37. Vazquez-Castilla S, De la Puerta R, Garcia-Gimenez M, FernandezArche M, Guillen-Bejarano R. Bioactive constituents from "Triguero" asparagus improve the plasma lipid profile and liver antioxidant status in hypercholesterolemic rats. Int. J. Mol. Sci. 14: 21227-21239 (2013) https://doi.org/10.3390/ijms141121227
  38. Wang M, Tadmor Y, Wu QL, Chin CK, Garrison SA, Simon JE. Quantification of protodioscin and rutin in asparagus shoots by LC/MS and HPLC methods. J. Agric. Food Chem. 51: 6132-6136 (2003) https://doi.org/10.1021/jf0344587
  39. Wu J, Yang T, Wang C, Liu Q, Yao J, Sun H, Kaku T, Liu KX. Laennec protects murine from concanavalin A-induced liver injury through inhibition of inflammatory reactions and hepatocyte apoptosis. Biol. Pharm. Bull. 31: 2040-2044 (2008) https://doi.org/10.1248/bpb.31.2040