DOI QR코드

DOI QR Code

Effect of Hexafluoroisopropanol Addition on Dry Etching of Cu Thin Films Using Organic Material

유기 물질을 사용한 구리박막의 건식 식각에 대한 헥사플루오로이소프로판올 첨가의 영향

  • Park, Sung Yong (Department of Chemical Engineering, Inha University) ;
  • Lim, Eun Teak (Department of Chemical Engineering, Inha University) ;
  • Cha, Moon Hwan (Department of Chemical Engineering, Inha University) ;
  • Lee, Ji Soo (Department of Chemical Engineering, Inha University) ;
  • Chung, Chee Won (Department of Chemical Engineering, Inha University)
  • 박성용 (인하대학교 화학공학과) ;
  • 임은택 (인하대학교 화학공학과) ;
  • 차문환 (인하대학교 화학공학과) ;
  • 이지수 (인하대학교 화학공학과) ;
  • 정지원 (인하대학교 화학공학과)
  • Received : 2021.02.14
  • Accepted : 2021.03.11
  • Published : 2021.03.27

Abstract

Dry etching of copper thin films is performed using high density plasma of ethylenediamine (EDA)/hexafluoroisopropanol (HFIP)/Ar gas mixture. The etch rates, etch selectivities and etch profiles of the copper thin films are improved by adding HFIP to EDA/Ar gas. As the EDA/HFIP concentration in EDA/HFIP/Ar increases, the etch rate of copper thin films decreases, whereas the etch profile is improved. In the EDA/HFIP/Ar gas mixture, the optimal ratio of EDA to HFIP is investigated. In addition, the etch parameters including ICP source power, dc-bias voltage, process pressure are varied to examine the etch characteristics. Optical emission spectroscopy results show that among all species, [CH], [CN] and [H] are the main species in the EDA/HFIP/Ar plasma. The X-ray photoelectron spectroscopy results indicate the formation of CuCN compound and C-N-H-containing polymers during the etching process, leading to a good etch profile. Finally, anisotropic etch profiles of the copper thin films patterned with 150 nm scale are obtained in EDA/HFIP/Ar gas mixture.

Keywords

References

  1. R. Rosenberg, D. C. Edelstein, C.-K. Hu and K. P. Rodbell, Annu. Rev. Mater. Sci., 30, 229 (2000). https://doi.org/10.1146/annurev.matsci.30.1.229
  2. S. P. Murarka and S. W. Hymes, Crit. Rev. Solid State Mater. Sci., 20, 87 (1995). https://doi.org/10.1080/10408439508243732
  3. F. Chen and D. Gardner, IEEE Electron Device Lett., 19, 508 (1998). https://doi.org/10.1109/55.735762
  4. S. M. Rossnagel and T. S. Kuan, J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom., 22, 240 (2004). https://doi.org/10.1116/1.1642639
  5. W. Zhang, S. H. Brongersma, N. Heylen, G. Beyer, W. Vandervorst and K. Maex, J. Electrochem. Soc., 152, C832 (2005). https://doi.org/10.1149/1.2109507
  6. M. Traving, G. Schindler and M. Engelhardt, J. Appl. Phys., 100, 094325 (2006). https://doi.org/10.1063/1.2361092
  7. S. H. Lee and Y. Kuo, J. Electrochem. Soc., 148, G524 (2001). https://doi.org/10.1149/1.1392324
  8. S. H. Lee and Y. Kuo, Thin Solid Films, 457, 326 (2004). https://doi.org/10.1016/j.tsf.2003.10.011
  9. S. K. Lee, S. S. Chun, C. Y. Hwang and W. J. Lee, Jpn. J. Appl. Phys., 36, 50 (1997). https://doi.org/10.1143/JJAP.36.50
  10. F. Wu, G. Levitin and D. W. Hess, J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom., 29, 011013 (2011).
  11. S. W. Kang, H. U. Kim and S. W. Rhee, J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom., 17, 154 (1999). https://doi.org/10.1116/1.590528
  12. E. T. Lim, J. S. Ryu and C. W. Chung, Thin Solid Films, 665, 51 (2018). https://doi.org/10.1016/j.tsf.2018.08.046
  13. E. T. Lim, J. S. Ryu, J. S. Choi and C. W. Chung, Vacuum, 167, 145 (2019). https://doi.org/10.1016/j.vacuum.2019.05.046
  14. J. S. Ryu, E. T. Lim, J. S. Choi and C. W. Chung, Thin Solid Films, 672, 55 (2019). https://doi.org/10.1016/j.tsf.2018.12.042
  15. M. H. Cha, E. T. Lim, S. Y. Park, J. S. Lee and C. W. Chung, Vacuum, 181, 109421 (2020). https://doi.org/10.1016/j.vacuum.2020.109421
  16. K. J. Clay, S. P. Speakman, G. A. J. Amaratunga and S. R. P. Silva, J. Appl. Phys., 79, 7227 (1996). https://doi.org/10.1063/1.361439
  17. S. Zimmermann, N. Ahner, F. Blaschta, M. Schaller, H. Rulke, S. E. Schulz and T. Gessner, Microelectron. Eng., 87, 337 (2010). https://doi.org/10.1016/j.mee.2009.08.004
  18. S. Poulston, P. M. Parlett, P. Stone and M. Bowker, Surf. Interface Anal., 24, 811 (1996). https://doi.org/10.1002/(SICI)1096-9918(199611)24:12<811::AID-SIA191>3.0.CO;2-Z
  19. A. Cano, Y. Avila, M. Avila and E. Reguera, J. Solid State Chem., 276, 339 (2019). https://doi.org/10.1016/j.jssc.2019.05.021
  20. E. Cano, J. M. Bastidas, J. L. Polo and N. Mora, J. Electrochem. Soc., 148, B431 (2001). https://doi.org/10.1149/1.1404968
  21. G. Beamson and D. Briggs, High Resolution XPS of Organic Polymers : The Scienta ESCA300 Database, p.182, John Wiley & Sons, New York (1992).
  22. M. Furukawa, H. Fujisawa, S. Katano, H. Ogasawara, Y. Kim, T. Komeda, A. Nilsson and M. Kawai, Surf. Sci., 532, 261 (2003). https://doi.org/10.1016/S0039-6028(03)00464-3
  23. G. C. Allen, F. Sorbello, C. Altavilla, A. Castorina and E. Ciliberto, Thin Solid Films, 483, 306 (2005). https://doi.org/10.1016/j.tsf.2004.12.062
  24. H. W. Kim and N. E. Lee, J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom., 28, 715 (2010). https://doi.org/10.1116/1.3442474