DOI QR코드

DOI QR Code

Recent Advances on Ionic Liquid based Mixed Matrix Membrane for CO2 Separation

CO2 분리를 위한 이온성 액체 기반 혼합 매트릭스 멤브레인의 최근 발전

  • Wang, Chaerim (Nano Science and Engineering, Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University) ;
  • Patel, Rajkumar (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
  • 황채림 (연세대학교 언더우드 국제대학 나노과학 공학과(NSE) 융합과학공학과(ISED)) ;
  • 라즈쿠마 파텔 (연세대학교 언더우드 국제대학 에너지 환경 공학부(EESE) 융합과학공학과(ISED))
  • Received : 2020.12.10
  • Accepted : 2021.01.06
  • Published : 2021.02.28

Abstract

The membrane-based CO2 capture is a fast-growing branch in gas separating field. Ionic liquid assisted mixed matrix membrane (MMM), which consists of organic fillers with dispersed ionic liquid, shows high potentiality as a candidate for CO2 separation medium. In MMM, various kinds of ionic liquid and inorganic filler are incorporated into polymer to enhance gas separating performance. Especially, the strong interaction between ionic liquid and organic filler gives huge influence on enhancing the separating performance by increasing affinity, selectivity and adsorption of CO2 into the framework. Also the mechanical properties of metal organic framework are positively tuned by input of ionic liquid to improve CO2 permeability and selectivity. In this review, study of various combinations of ionic liquid and metal organic framework (MOF) in the polymeric membrane for carbon dioxide separation is discussed.

이온성 액체 기반 혼합 멤브레인(MMM)은 이산화탄소 분리 매체로써 다양한 종류의 이온성 액체와 무기성 필러 폴리머에 의해 만들어진다. 이온성 액체와 무기성 필러의 강한 상호작용은 이산화탄소의 금속 유기체의 프레임워크 내 친화력, 선택성, 흡착성을 높여 분리성능을 향상시킨다. 또, 이온성 액체에 의해 혼합 매트릭스 멤브레인의 구조적 특성이 조절되어 이산화탄소 투과성과 선택성을 향상시킨다. 이 리뷰에서는 이산화탄소 분리를 위한 고분자 막에서의 이온성 액체(IL)와 금속 유기체 프레임워크(MOF)의 다양한 조합에 대한 연구가 논의될 것이다.

Keywords

References

  1. J. Dechnik, C. J. Sumby, and C. Janiak, "Enhancing mixed-matrix membrane performance with metalorganic framework additives", Crystal Growth & Design, 17, 4467 (2017). https://doi.org/10.1021/acs.cgd.7b00595
  2. D. A. Kang, K. Ki, and J. H. Kim, "Highly-permeable mixed matrix membranes based on SBS-g-POEM copolymer, ZIF-8 and ionic liquid", Membr. J., 29, 44 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.1.44
  3. J. H. Park and R. Patel, "Ionic liquid based carbon dioxide separation membrane", Membr. J., 30, 149 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.3.149
  4. K. W. Yoon and S. W. Kang, "1-Butyl-3-methylimi dazolium tetrafluoroborate/Al2O3 composite membrane for CO2 separation", Membr. J., 27, 226 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.3.226
  5. M. Kalaj, K. C. Bentz, S. Ayala, J. M. Palomba, K. S. Barcus, Y. Katayama, and S. M. Cohen, "MOF-polymer hybrid materials: From simple composites to tailored architectures", Chem. Rev., 120, 8267 (2020). https://doi.org/10.1021/acs.chemrev.9b00575
  6. F. P. Kinik, A. Uzun, and S. Keskin, "Ionic liquid/metal-organic framework composites: From synthesis to applications", ChemSusChem, 10, 2842 (2017). https://doi.org/10.1002/cssc.201700716
  7. Q. X. Luo, B. W. An, M. Ji, and J. Zhang, "Hybridization of metal-organic frameworks and task-specific ionic liquids: Fundamentals and challenges", Materials Chemistry Frontiers, 2, 219 (2018). https://doi.org/10.1039/c7qm00416h
  8. S. Kalantari, M. Omidkhah, A. Ebadi Amooghin, and Matsuura, "Superior interfacial design in ternary mixed matrix membranes to enhance the CO2 separation performance", Appl. Mater. Today, 18, 100491 (2020). https://doi.org/10.1016/j.apmt.2019.100491
  9. S. W. Kang, "Review on facilitated olefin transport membranes utilizing polymer electrolytes and polymer nanocomposites", Membr. J., 26, 173 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.3.173
  10. S. J. Mon, H. J. Min, N. U. Kim, and J. H. Kim "Fabrication of polymeric blend membranes using PBEM-POEM comb copolymer and poly(ethylene glycol) for CO2 capture", Membr. J., 29, 223 (2019). https://doi.org/10.14579/membrane_journal.2019.29.4.223
  11. A. E. Amooghin, S. Mashhadikhan, H. Sanaeepur, A. Moghadassi, T. Matsuura, and S. Ramakrishna, "Substantial breakthroughs on function-led design of advanced materials used in mixed matrix membranes (MMMs): A new horizon for efficient CO2 separation", Prog. Mater. Sci., 102, 222 (2019). https://doi.org/10.1016/j.pmatsci.2018.11.002
  12. H. Sanaeepur, A. Ebadi Amooghin, S. Bandehali, A. Moghadassi, T. Matsuura, and B. Van der Bruggen, "Polyimides in membrane gas separation: Monomer's molecular design and structural engineering", Prog. Polym. Sci., 91, 80 (2019). https://doi.org/10.1016/j.progpolymsci.2019.02.001
  13. X. Guo, Z. Qiao, D. Liu, and C. Zhong, "Mixed-matrix membranes for CO2 separation: Role of the third component", J. Mater. Chem. A, 7, 24738 (2019). https://doi.org/10.1039/c9ta09012f
  14. A. Nadeali, S. Kalantari, M. Yarmohammadi, M. Omidkhah, A. Ebadi Amooghin, and M. Zamani Pedram, "CO2 separation properties of a ternary mixed-matrix membrane using ultraselective synthesized macrocyclic organic compounds", ACS Sustain. Chem. Engg., 8, 12775 (2020). https://doi.org/10.1021/acssuschemeng.0c01895
  15. M. Ding, R. W. Flaig, H.-L. Jiang, and O. M. Yaghi, "Carbon capture and conversion using metal-organic frameworks and MOF-based materials", Chem. Soc. Rev., 48, 2783 (2019). https://doi.org/10.1039/c8cs00829a
  16. H. Gao, L. Bai, J. Han, B. Yang, S. Zhang, and X. Zhang, "Functionalized ionic liquid membranes for CO2 separation", Chem. Commun., 54, 12671 (2018). https://doi.org/10.1039/c8cc07348a
  17. R. Lin, B. V. Hernandez, L. Ge, and Z. Zhu, "Metal organic framework based mixed matrix membranes: An overview on filler/polymer interfaces", J. Mater. Chem. A, 6 , 293 (2018). https://doi.org/10.1039/C7TA07294E
  18. Y. Ban, Z. Li, Y. Li, Y. Peng, H. Jin, W. Jiao, A. Guo, P. Wang, Q. Yang, C. Zhong, and W. Yang, "Confinement of ionic liquids in nanocages: Tailoring the molecular sieving properties of ZIF-8 for membrane-based CO2 capture", Angew. Chem. Int. Ed., 54, 15483 (2015). https://doi.org/10.1002/anie.201505508
  19. A. Jomekian, B. Bazooyar, R. M. Behbahani, T. Mohammadi, and A. Kargari, "Ionic liquid-modified 1657 membrane filled by ZIF-8 particles for separation of CO2 from CH4, N2 and H2", J. Membr. Sci., 524, 652 (2017). https://doi.org/10.1016/j.memsci.2016.11.065
  20. Z. Guo, W. Zheng, X. Yan, Y. Dai, X. Ruan, X. Yang, X. Li, N. Zhang, and G. He, "Ionic liquid tuning nanocage size of MOFs through a two-step adsorption/infiltration strategy for enhanced gas screening of mixed-matrix membranes", J. Membr. Sci., 605 (2020).
  21. F. P. Kinik, C. Altintas, V. Balci, B. Koyuturk, A. Uzun, and S. Keskin, "[BMIM][PF6] incorporation doubles CO2 selectivity of ZIF-8: Elucidation of interactions and their consequences on performance", ACS Appl. Mater. Interfaces, 8, 30992 (2016). https://doi.org/10.1021/acsami.6b11087
  22. B. Koyuturk, C. Altintas, F. P. Kinik, S. Keskin, and A. Uzun, "Improving gas separation performance of ZIF-8 by [BMIM][BF4] incorporation: Interactions and their consequences on performance", J. Phys. Chem. C, 121, 10370 (2017). https://doi.org/10.1021/acs.jpcc.7b00848
  23. M. Zeeshan, S. Keskin, and A. Uzun, "Enhancing CO2/CH4 and CO2/N2 separation performances of ZIF-8 by post-synthesis modification with [BMIM] [SCN]", Polyhedron, 155, 485 (2018). https://doi.org/10.1016/j.poly.2018.08.073
  24. V. Nozari, S. Keskin, and A. Uzun, "HKUST, toward rational design of ionic liquid/metal-organic framework composites: Effects of interionic interaction energy", ACS Omega, 2, 6613 (2017). https://doi.org/10.1021/acsomega.7b01074
  25. Z. Bian, X. Zhu, T. Jin, J. Gao, J. Hu, and H. Liu, "Ionic liquid-assisted growth of Cu3(BTC)2 nanocrystals on graphene oxide sheets: Towards both high capacity and high rate for CO2 adsorption", Microporous Mesoporous Mater., 200, 159 (2014). https://doi.org/10.1016/j.micromeso.2014.08.012
  26. R. Lin, L. Ge, H. Diao, V. Rudolph, and Z. Zhu, "Ionic liquids as the MOFs/polymer interfacial binder for efficient membrane separation", ACS Appl. Mater. Interfaces, 8, 32041 (2016). https://doi.org/10.1021/acsami.6b11074
  27. C. Chen, N. Feng, Q. Guo, Z. Li, X. Li, J. Ding, L. Wang, H. Wan, and G. Guan, "Surface engineering of a chromium metal-organic framework with bifunctional ionic liquids for selective CO2 adsorption: Synergistic effect between multiple active sites", J. Colloid Interface Sci., 521, 91 (2018). https://doi.org/10.1016/j.jcis.2018.03.029
  28. X. Xia, G. Hu, W. Li, and S. Li, "Understanding reduced CO2 uptake of ionic liquid/metal-organic framework (IL/MOF) composites", ACS Appl. Nano Mat., 2, 6022 (2019). https://doi.org/10.1021/acsanm.9b01538
  29. W. Xue, Z. Li, H. Huang, Q. Yang, D. Liu, Q. Xu, and C. Zhong, "Effects of ionic liquid dispersion in metal-organic frameworks and covalent organic frameworks on CO2 capture: A computational study", Chem. Eng. Sci., 140, 1 (2016). https://doi.org/10.1016/j.ces.2015.10.003
  30. B. Liu, D. Li, J. Yao, and H. Sun, "Improved CO2 separation performance and interfacial affinity of mixed matrix membrane by incorporating UiO-66-PEI@[bmim][Tf2N] particles", Sep. Purif. Technol., 239 (2020).
  31. S. Hanioka, T. Maruyama, T. Sotani, M. Teramoto, H. Matsuyama, K. Nakashima, M. Hanaki, F. Kubota, and M. Goto, "CO2 separation facilitated by task-specific ionic liquids using a supported liquid membrane", J. Membr. Sci., 314, 1 (2008). https://doi.org/10.1016/j.memsci.2008.01.029