DOI QR코드

DOI QR Code

Performance Analysis of an Integrated Navigation of an Airborne AESA Radar

항공기 탑재 AESA 레이다의 통합 항법 성능 분석 연구

  • Received : 2020.12.14
  • Accepted : 2021.02.23
  • Published : 2021.04.01

Abstract

For successful operations of an airborne Active Electronically-Scanned Array (AESA) radar, which has various advantages over traditional radar systems, accurate and robust navigation is critical. This paper discusses a study on the performance analysis of an integrated navigation based on the Embedded GPS/INS (EGI) system for an aircraft equipped with an AESA radar. The models for generating the inputs for the GPS/IMU are developed. A navigation filter for a loosely-coupled GPS/IMU system is constructed. Overall navigation performance assessment procedure using a six degree of freedom aircraft simulator - along with the GPS/IMU models and the navigation filter - is introduced. The steps of the performance analysis procedure are explained using a comprehensive case study.

기존 레이다 시스템에 비해 다양한 이점을 제공하는 능동 위상 배열 (AESA) 레이다의 성공적인 운용을 위해서는 정확하고 강건한 항법이 중요하다. 본 논문은 AESA 레이다를 탑재한 항공기의 EGI 시스템을 기반으로 한 통합 항법의 성능 분석에 대한 연구를 소개한다. GPS 및 IMU 입력을 생성하는 모델이 개발되었고, GPS/IMU 약결합 항법 필터가 구성되었다. GPS/IMU 모델 및 항법 필터와 함께 6자유도 항공기 시뮬레이터를 사용하여 항법 성능을 평가하는 절차가 소개되었다. 성능 분석 절차의 단계는 사례 연구와 함께 설명되었다.

Keywords

References

  1. Bruce, H., Dennis, L. and John, D., "Pseudo Six Degree of Freedom (DOF) Models for Higher Fidelity Constructive Simulations," AIAA Modeling and Simulation Technologies Conference and Exhibit, 2008, p. 6857.
  2. Garza, F. R. and Morelli, E. A., "A collection of nonlinear aircraft simulations in matlab," NASA Technical Report, 2003.
  3. Rippel, E., Bar-Gill, A. and Shimkin, N., "Fast graph-search algorithms for general-aviation flight trajectory generation," Journal of Guidance, Control, and Dynamics, Vol. 28, No. 4, 2005, pp. 801-811. https://doi.org/10.2514/1.7370
  4. Anderson, E. P., Beard, R. W. and McLain, T. W., "Real-time dynamics trajectory smoothing for unmanned air vehicles," IEEE Transaction on control systems technology, Vol. 13, No. 3, 2005, pp. 471-477. https://doi.org/10.1109/TCST.2004.839555
  5. Yang, G. and Kapila, V., "Optimal path planning for unmanned air vehicles with kinematic and tactical constraints," Proceedings of the 41st IEEE Conference on Decision and Control, Vol. 2, 2002, pp. 1301-1306.
  6. Stevens, B. L., Lewis, F. L. and Johnson, E. N., "Aircraft Control and Simulation: dynamics, controls design, and autonomous systems," John Wiley & Sons, 2015.
  7. Ko, J. Y., Park, S. S., Choi, H. L., Ahn, J. M., Lee, S. W., Lee, D. H. and Yoon, J. S., "Implementation of Airbone Multi-Function Radar Including Attitude Maneuvering," The Journal of Korean Institute of Electromagnetic Engineering and Science, Vol. 28, No. 3, pp. 225-236. https://doi.org/10.5515/KJKIEES.2017.28.3.225
  8. CDDIS. https://cddis.nasa.gov/Data_and_Derived_Products/GNSS/high-rate_data.html.
  9. Rankin, J., Ph.D., P. E., "GPS and Differential GPS: An Error Model for Sensor Simulation," Position Location and Navigation Symposium, 1994, pp. 260-260.
  10. Van G., F. and Soloviev, A., "Precise velocity estimation using a stand-alone GPS receiver," Proceedings of the 2003 National Technical Meeting of The Institute of Navigation, 2003, pp. 262-271.
  11. Crassidis, J. L., "Sigma-point Kalman filtering for integrated GPS and inertial navigation," IEEE Transactions on Aerospace and Electronic Systems, Vol. 42, No. 2, 2006, pp. 750-756. https://doi.org/10.1109/TAES.2006.1642588
  12. Lee, D. U., Im, J. H., Lee, H. M., Jung, Y. G., Jeong, J. H., Shin, J. H., Lee, S. W., Park, J. H. and Ahn, J. M., "Modeling and Simulation of Aircraft Motion for Performance Assessment of Airborne AESA Radar Considering Wind and Vibration," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 48, No 11, 2020, pp. 903-910. https://doi.org/10.5139/JKSAS.2020.48.11.903