DOI QR코드

DOI QR Code

한국 성인에서 고혈압과 신기능 저하와의 관련성

Relationship between Hypertension and the Declining Renal Function in Korean Adults

  • 이준호 (원광보건대학교 임상병리과)
  • Lee, Jun Ho (Department of Clinical Laboratory Science, Wonkwang Health Science University)
  • 투고 : 2021.02.04
  • 심사 : 2021.03.01
  • 발행 : 2021.03.31

초록

본 연구는 한국 성인에서 고혈압(HTN), 추정사구체여과율(eGFR) 및 소변미세알부민/크레아티닌 비율(ACR)과의 연관성을 평가하기 위한 연구이다. 제 6차 국민건강영양조사(2013~2014)에서 20세 이상 8,922명(남자 3,941명, 여자 4,981명)을 대상으로 관련변수를 보정한 후, 신기능저하(eGFR <60 mL/min/1.73 ㎡) 및 알부민뇨(ACR ≥30 mg/g)에 따른 고혈압의 위험률을 분석하였다. 남자의 경우 HTN [수축기 혈압(SBP) ≥140 mmHg, 이완기 혈압(DBP) ≥90 mmHg 또는 HTN 약물 사용]의 위험비(ORs)가 정상 그룹(eGFR ≥60 mL/min /1.73 ㎡ 및 ACR <30 mg/g)에 비하여 저하된 eGFR 그룹(eGFR <60 mL/min/1.73 ㎡, 1.98; 95% CI, 1.21~3.24), ACR 상승 그룹(ACR ≥30 mg/g, 2.03; 95% CI, 1.54~2.69), eGFR이 감소하고 ACR이 증가된 그룹(eGFR <60 mL/min/1.73 ㎡ 및 ACR ≥30 mg/g, 6.03; 95% CI, 2.82~12.92)에서 유의하게 높았다. 여자에서 HTN의 위험률은 정상 그룹보다 eGFR 저하 그룹(2.29, 95% CI, 1.27~4.13), ACR 상승 그룹(2.22, 95% CI, 1.68~2.94)과 eGFR이 저하되고 ACR이 증가된 그룹(10.77, 95% CI, 3.89~29.82)에서 유의하게 높았다. 결과적으로 HTN은 한국 성인에서 eGFR 저하, ACR 상승과 관련이 있으며, eGFR 저하와 ACR 상승이 동시에 발생했을 때 HTN의 유병률이 크게 증가했다.

This study examined the association between hypertension (HTN), estimated glomerular filtration rate (eGFR), and urine microalbumin/creatinine ratio (ACR) in Korean adults. Data for 8,922 adults (3,941 men and 4,981 women) aged ≥20 years from the Sixth Korean National Health and Nutrition Examination Survey VI (2013~2014) were analyzed. In men, after adjusting for the related variables, the odds ratios (ORs) of HTN [systolic blood pressure (SBP) ≥140 mmHg, diastolic blood pressure (DBP) ≥90 mmHg, or use of HTN medications] were significantly higher in the decreased eGFR group [eGFR <60 mL/min/1.73 ㎡, 1.98 (95% CI, 1.21~3.24)], elevated ACR group [ACR ≥30 mg/g, 2.03 (95% CI, 1.54~2.69)], and decreased eGFR plus elevated ACR group [eGFR <60 mL/min/1.73 ㎡ and ACR ≥30 mg/g, 6.03 (95% CI, 2.82~12.92)] than in the normal group (eGFR ≥60 mL/min/1.73 ㎡ and ACR <30 mg/g). In women, after adjusting for the related variables, the ORs of HTN were significantly higher in the decreased eGFR group (2.29, 95% CI, 1.27~4.13), elevated ACR group (2.22, 95% CI, 1.68~2.94), and decreased eGFR plus elevated ACR group (10.77, 95% CI, 3.89~29.82) than the normal group. In conclusion, HTN was associated with a decreased eGFR and elevated ACR in Korean men and women. In addition, the prevalence of HTN increased greatly when a decreased eGFR and elevated ACR occurred simultaneously.

키워드

참고문헌

  1. Muntner P, He J, Hamm L, Loria C, Whelton PK. Renal insufficiency and subsequent death resulting from cardiovascular disease in the United States. J Am Soc Nephrol. 2002;13:745-753. https://doi.org/10.1681/ASN.V133745
  2. Wen CP, Cheng TY, Tsai MK, Chang YC, Chan HT, Tsai SP, et al. All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462 293 adults in Taiwan. Lance.t 2008;371:2173-2182. https://doi.org/10.1016/S0140-6736(08)60952-6
  3. Hallan SI, Coresh J, Astor BC, Asberg A, Powe NR, Romundstad S, et al. International comparison of the relationship of chronic kidney disease prevalence and ESRD risk. J Am Soc Nephrol. 2006;17:2275-2284. https://doi.org/10.1681/ASN.2005121273
  4. Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P, et al. Prevalence of chronic kidney disease in the United States. JAMA. 2007;298:2038-2047. https://doi.org/10.1001/jama.298.17.2038
  5. National Kidney Foundation: K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39(2 Suppl 1):1-266. https://doi.org/10.1053/ajkd.2002.29865
  6. Levey AS, Atkins R, Coresh J, Cohen EP, Collins AJ, Eckardt KU, et al. Chronic kidney disease as a global public health problem: approaches and initiatives - a position statement from Kidney Disease Improving Global Outcomes. Kidney Int. 2007;72:247-259. https://doi.org/10.1038/sj.ki.5002343
  7. Bakris GL, Ritz E. World Kidney Day Steering Committee: The message for World Kidney Day 2009: hypertension and kidney disease: a marriage that should be prevented. J Clin Hypertens (Greenwich). 2009;11:144-147. https://doi.org/10.1097/HJH.0b013e328327706a
  8. Coresh J, Wei GL, McQuillan G, Brancati FL, Levey AS, Jones C, et al. Prevalence of high blood pressure and elevated serum creatinine level in the United States: findings from the third National Health and Nutrition Examination Survey (1988-1994). Arch Intern Med. 2001;161:1207-1216. https://doi.org/10.1001/archinte.161.9.1207
  9. Agarwal R, Nissenson AR, Batlle D, Coyne DW, Trout JR, Warnock DG. Prevalence, treatment, and control of hypertension in chronic hemodialysis patients in the United States. Am J Med. 2003;115:291-297. https://doi.org/10.1016/s0002-9343(03)00366-8
  10. Ahn HJ, Moon DS, Kang DY, Lee JI, Kim DY, Kim JH, et al. Urinary albumin excretion reflects cardiovascular risk in postmenopausal women without diabetes: The 2011 to 2013 Korean National Health and Nutrition Examination Survey. Endocrinol Metab (Seoul). 2016;31:537-546. https://doi.org/10.3803/EnM.2016.31.4.537
  11. American Diabetes Association. 9. Cardiovascular disease and risk management. Diabetes Care. 2017;40(Suppl 1):75-87. https://doi.org/10.2337/dc17-S012
  12. Gee MY, Yoon H. The association of uine mcroalbumin and pulse pressure in Korean adults. Korean J Clin Lab Sci. 2016;48:183-187. https://doi.org/10.15324/kjcls.2016.48.3.183
  13. Inker LA, Astor BC, Fox CH, Isakova T, Lash JP, Peralta CA, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am J Kidney Dis. 2014;63:713-735. https://doi.org/10.1053/j.ajkd.2014.01.416
  14. Levey AS, de Jong PE, Coresh J, El Nahas M, Astor BC, Matsushita K, et al. The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int. 2011;80:17-28. https://doi.org/10.1038/ki.2010.483
  15. Levey AS, Stevens LA. Estimating GFR using the CKD epidemiology collaboration (CKD-EPI) creatinine equation: more accurate GFR estimates, lower CKD prevalence estimates, and better risk predictions. Am J Kidney Dis. 2010;55:622-627. https://doi.org/10.1053/j.ajkd.2010.02.337
  16. Zhang QL, Rothenbacher D. Prevalence of chronic kidney disease in population-based studies: systematic review. BMC Public Health. 2008;8:117. https://doi.org/10.1186/1471-2458-8-117
  17. Chen J, Wildman RP, Gu D, Kusek JW, Spruill M, Reynolds K, et al. Prevalence of decreased kidney function in Chinese adults aged 35 to 74 years. Kidney Int. 2005;68:2837-2845. https://doi.org/10.1111/j.1523-1755.2005.00757.x
  18. Shankar A, Klein R, Klein BE. The association among smoking, heavy drinking, and chronic kidney disease. Am J Epidemiol. 2006;164:263-271. https://doi.org/10.1093/aje/kwj173
  19. Kiuchi MG, Mion D Jr. Chronic kidney disease and risk factors responsible for sudden cardiac death: a whiff of hope? Kidney Res Clin Pract. 2016;35:3-9. https://doi.org/10.1016/j.krcp.2015.11.003
  20. Yoon H, Lee JH. Relationship between the estimated glomerular filtration rate and the urine microalbumin/creatinine ratio and ferritin in Korean adults. Korean J Clin Lab Sci. 2019;51:145-154. https://doi.org/10.15324/kjcls.2019.51.2.145
  21. Vejakama P, Ingsathit A, McKay GJ, Maxwell AP, McEvoy M, Attia J, et al. Treatment effects of renin-angiotensin aldosterone system blockade on kidney failure and mortality in chronic kidney disease patients. BMC Nephrol. 2017;18:342. https://doi.org/10.1186/s12882-017-0753-9.
  22. Lin YP. Albuminuria in hypertension. Hypertens Res. 2013;36:762-764. https://doi.org/10.1038/hr.2013.76
  23. Renna NF, de Las Heras N, Miatello RM. Pathophysiology of vascular remodeling in hypertension. Int J Hypertens. 2013;2013:808353. https://doi.org/10.1155/2013/808353
  24. Stehouwer CD, Smulders YM. Microalbuminuria and risk for cardiovascular disease: analysis of potential mechanisms. J Am Soc Nephrol. 2006;17:2106-2111. https://doi.org/10.1681/ASN.2005121288
  25. Ruiz-Hurtado G, Ruilope LM, de la Sierra A, Sarafidis P, de la Cruz JJ, Gorostidi M, et al. Association between high and very high albuminuria and nighttime blood pressure: influence of diabetes and chronic kidney disease. Diabetes Care. 2016;39:1729-1737. https://doi.org/10.2337/dc16-0748.
  26. Wang K, Hu J, Luo T, Wang Y, Yang S, Qing H, et al. Effects of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on all-cause mortality and renal outcomes in patients with diabetes and albuminuria: a systematic review and meta-analysis. Kidney Blood Press Res. 2018;43:768-779. https://doi.org/10.1159/000489913
  27. Lee HF, See LC, Chan YH, Yeh YH, Wu LS, Liu JR, et al. End-stage renal disease patients using angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may reduce the risk of mortality: a Taiwanese nationwide cohort study. Intern Med J. 2018;48:1123-1132. https://doi.org/10.1111/imj.13971
  28. Agodoa LY, Appel L, Bakris GL, Beck G, Bourgoignie J, Briggs JP, et al. Effect of ramipril vs amlodipine on renal outcomes in hypertensive nephrosclerosis: a randomized controlled trial. JAMA. 2001;285:2719-2728. https://doi.org/10.1001/jama.285.21.2719
  29. Zheng CM, Wang JY, Chen TT, Wu YC, Wu YL, Lin HT, et al. Angiotensin-converting enzyme inhibitors or angiotensin receptor blocker monotherapy retard deterioration of renal function in Taiwanese chronic kidney disease population. Sci Rep. 2019;9:2694. https://doi.org/10.1038/s41598-019-38991-z
  30. Said S, Hernandez GT. The link between chronic kidney disease and cardiovascular disease. J Nephropathol. 2014;3:99-104. https://doi.org/10.12860/jnp.2014.19
  31. Alonso A, Lopez FL, Matsushita K, Loehr LR, Agarwal SK, Chen LY, et al. Chronic kidney disease is associated with the incidence of atrial fibrillation: the atherosclerosis risk in communities (ARIC) study. Circulation. 2011;123:2946-2953. https://doi.org/10.1161/CIRCULATIONAHA.111.020982
  32. Nayor M, Larson MG, Wang N, Santhanakrishnan R, Lee DS, Tsao CW, et al. The association of chronic kidney disease and microalbuminuria with heart failure with preserved vs. reduced ejection fraction. Eur J Heart Fail. 2017;19:615-623. https://doi.org/10.1002/ejhf.778
  33. Guh JY. Proteinuria versus albuminuria in chronic kidney disease. Nephrology (Carlton). 2010;15(Suppl 2):53-56. https://doi.org/10.1111/j.1440-1797.2010.01314.x
  34. Arnlov J, Evans JC, Meigs JB, Wang TJ, Fox CS, Levy D, et al. Low-grade albuminuria and incidence of cardiovascular disease events in nonhypertensive and nondiabetic individuals: the Framingham Heart Study. Circulation. 2005;112:969-975. https://doi.org/10.1161/CIRCULATIONAHA.105.538132
  35. Gerstein HC, Mann JF, Yi Q, Zinman B, Dinneen SF, Hoogwerf B, et al. Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA. 2001;286:421-426. https://doi.org/10.1001/jama.286.4.421
  36. Viazzi F, Leoncini G, Conti N, Tomolillo C, Giachero G, Vercelli M, et al. Microalbuminuria is a predictor of chronic renal insufficiency in patients without diabetes and with hypertension: the MAGIC study. Clin J Am Soc Nephrol. 2010;5:1099-1106. https://doi.org/10.2215/CJN.07271009
  37. van der Velde M, Matsushita K, Coresh J, Astor BC, Woodward M, Levey A, et al. Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int. 2011;79:1341-1352. https://doi.org/10.1038/ki.2010.536