DOI QR코드

DOI QR Code

Prevalence of JAK2 V617F, CALR, and MPL W515L Gene Mutations in Patients with Essential Thrombocythemia in Kurdistan Region of Iraq

  • Saeed, Bestoon Muhammad (Department of Hematology, Hiwa Hemato-Oncology Center) ;
  • Getta, Hisham Arif (Department of Pathology, College of Medicine, University of Sulaymaniyah) ;
  • Khoshnaw, Najmaddin (Department of Hematology, Hiwa Hemato-Oncology Center) ;
  • Abdulqader, Goran (Department of Pathology, College of Medicine, University of Sulaymaniyah) ;
  • Abdulqader, Aveen M. Raouf (Department of Pathology, College of Medicine, University of Sulaymaniyah) ;
  • Mohammed, Ali Ibrahim (Department of Pathology, College of Medicine, University of Sulaymaniyah)
  • 투고 : 2021.01.22
  • 심사 : 2021.02.06
  • 발행 : 2021.03.31

초록

Essential thrombocythemia (ET) is a clonal bone marrow stem cell disorder, primarily involving the megakaryocytic lineage. The WHO 2016 guidelines include the molecular detection of JAK2, MPL, and CALR mutations as a major diagnostic criterion for ET. This study aimed to determine the frequency of JAK2 V617F, MPL W515L, and CALR mutations in Iraqi Kurdish patients afflicted with ET, and to analyze their clinical and hematological features. A total of 73 Iraqi Kurdish patients with ET were enrolled as subjects, and analysis was achieved utilizing real-time PCR. The frequency of JAK2 V617F, CALR, and MPL W515L mutations was determined to be 50.7%, 22%, and 16.4%, respectively. No statistically significant difference was obtained when considering the age and gender among different genotypes. The JAK2 V617F mutated patients had significantly higher white blood cell counts and hemoglobin levels than the CALR-positive patients (P-value=0.000, 0.007, respectively), MPL W515L-positive patients (P-value=0.000, 0.000, respectively), and triple negative patients (P-value=0.000, 0.000, respectively). Also, the JAK2 V617F mutated patients showed higher platelet count as compared to the MPL W515L-positive patients (P-value=0.02) and triple negative patients (P-value=0.04). Furthermore, significantly lower white blood cell count and hemoglobin levels were associated with CALR positivity (P-value=0.000, 0.01, respectively), MPL W515L-positivity (P-value=0.001, 0.000, respectively), and triple negativity (P-value=0.000, 0.000, respectively), as compared to patients with combined mutations. In conclusion, apart from a relatively high frequency of MPL W515L mutation, our data is comparable to earlier reports, and highlights the importance of genotyping the JAK2 V617F, MPL W515L, and CALR mutations for accurate diagnosis of patients with ET.

키워드

참고문헌

  1. Lee KK, Cho H, Chi H, Kim DY, Chae SL, Huh HJ. A Case of postessential thrombocythemia myelofibrosis with severe osteosclerosis. Korean J Lab Med. 2010;30:122-125. https://doi.org/10.3343/kjlm.2010.30.2.122
  2. Kaushansky K. On the molecular origins of the chronic myeloproliferative disorders: it all makes sense. Blood. 2005;105:4187-4190. https://doi.org/10.1182/blood-2005-03-1287
  3. Ma W, Kantarjian H, Zhang X, Yeh C, Zhang Z, Verstovsek S, et al. Mutation profile of JAK2 transcripts in patients with chronic myeloproliferative neoplasias. J Mol Diagn. 2009;11:49-53. https://doi.org/10.2353/jmoldx.2009.080114
  4. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365:1054-1061. https://doi.org/10.1016/S0140-6736(05)71142-9
  5. Antonioli E, Guglielmelli P, Pancrazzi A, Bogani C, Verrucci M, Ponziani V, et al. Clinical implications of the JAK2 V617F mutation in essential thrombocythemia. Leukemia. 2005;19:1847-1849. https://doi.org/10.1038/sj.leu.2403902
  6. Wang J, Zhang B, Chen B, Zhou R, Zhang Q, Li J, et al. JAK2, MPL, and CALR mutations in Chinese Han patients with essential thrombocythemia. Hematology. 2017;22:145-148. https://doi.org/10.1080/10245332.2016.1252003
  7. Kim BH, Cho YU, Bae MH, Jang S, Seo EJ, Chi HS, et al. JAK2 V617F, MPL, and CALR mutations in Korean patients with essential thrombocythemia and primary myelofibrosis. J Korean Med Sci. 2015;30:882-888. https://doi.org/10.3346/jkms.2015.30.7.882
  8. Kim SY, Im K, Park SN, Kwon J, Kim J, Lee DS. CALR, JAK2, and MPL mutation profiles in patients with four different subtypes of myeloproliferative neoplasms primary myelofibrosis, essential thrombocythemia, polycythemia vera, and myeloproliferative neoplasm, unclassifiable. Am J Clin Pathol. 2015;143:635-644. https://doi.org/10.1309/AJCPUAAC16LIWZMM
  9. Lin Y, Liu E, Sun Q, Ma J, Li Q, Cao Z, et al. The prevalence of JAK2, MPL, and CALR mutations in Chinese patients with BCR-ABL1-negative myeloproliferative neoplasms. Am J Clin Pathol. 2015;144:165-171. https://doi.org/10.1309/AJCPALP51XDIXDDV
  10. Lang T, Nie Y, Wang Z, Huang Q, An L, Wang Y, et al. Correlation analysis between JAK2, MPL, and CALR mutations in patients with myeloproliferative neoplasms of Chinese Uygur and Han nationality and their clinical characteristics. J Int Med Res. 2018;46:4650-4659. https://doi.org/10.1177/0300060518787719
  11. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369:2379-2390. https://doi.org/10.1056/NEJMoa1311347
  12. Vainchenker W, Constantinescu SN, Plo I. Recent advances in understanding myelofibrosis and essential thrombocythemia. F1000 Research. 2016;5:1-13. https://doi.org/10.12688/f1000research.8081.1
  13. Ji L, Qian M, Wu N, Wu J. Significance of combined detection of JAK2V617F, MPL and CALR gene mutations in patients with essential thrombocythemia. Exp Ther Med. 2017;13:947-951. https://doi.org/10.3892/etm.2017.4077
  14. Wu Z, Zhang X, Xu X, Chen Y, Hu T, Kang Z, et al. The mutation profile of JAK2 and CALR in Chinese Han patients with Philadelphia chromosome-negative myeloproliferative neoplasms. J Hematol Oncol. 2014;7:1-10. https://doi.org/10.1186/1756-8722-7-1
  15. Kim HR, Choi HJ, Kim YK, Kim HJ, Shin JH, Suh SP, et al. Allelic expression imbalance of JAK2 V617F mutation in BCR-ABL negative myeloproliferative neoplasms. PLoS ONE. 2013;8:e52518. https://doi.org/10.1371/journal.pone.0052518
  16. Ojeda MJ, Bragos IM, Calvo KL, Williams GM, Carbonell MM, Pratti AF. CALR, JAK2 and MPL mutation status in argentinean patients with BCR-ABL1- negative myeloproliferative neoplasms. Hematology. 2018;23:208-211. https://doi.org/10.1080/10245332.2017.1385891
  17. Syeed N. JAK2 and Beyond: JAK2V617 mutational study of myeloproliferative disorders and haematological malignancies. Asian Pac J Cancer Prev. 2019;20:3611-3615. https://doi.org/10.31557/APJCP.2019.20.12.3611
  18. Jaradat SA, Khasawneh R, Kamal N, Matalka I, Al-Bishtawi M, Al-Sweedan S, et al. Analysis of JAK2V617F mutation in Jordanian patients with myeloproliferative neoplasms. Hematol Oncol Stem Cell Ther. 2015;8:160-166. https://doi.org/10.1016/j.hemonc.2015.07.004
  19. Nancy LM, Samantha GB, Javier GE, Perla CP, Valeria GO, Virginia RN, et al. The mutation profile of JAK2, MPL and CALR in Mexican patients with Philadelphia chromosome-negative myeloproliferative neoplasms. Hematol Oncol Stem Cell Ther. 2015;8:16-21. https://doi.org/10.1016/j.hemonc.2014.12.002
  20. Vu HA, Thao TT, Dong CV, Vuong NL, Chuong HQ, Van PNT, et al. Clinical and hematological relevance of JAK2V617F, CALR, and MPL mutations in Vietnamese patients with essential thrombocythemia. Asian Pac J Cancer Prev. 2019;20:2775-2780. https://doi.org/10.31557/APJCP.2019.20.9.2775
  21. Li MY, Chao HY, Sun AN, Qiu HY, Jin ZM, Tang XW, et al. Clinical significance of JAK2, CALR, and MPL gene mutations in 1648 Philadelphia chromosome negative myeloproliferative neoplasms patients from a single center. chinese Journal of Hematology. 2017;38:295-300. https://doi.org/10.3760/cma.j.issn.0253-2727.2017.04.007
  22. Misawa K, Yasuda H, Araki M, Ochiai T, Morishita S, Shirane S, et al. Mutational subtypes of JAK2 and CALR correlate with different clinical features in Japanese patients with myeloproliferative neoplasms. Int J Hematol. 2018;107:673-680. https://doi.org/10.1007/s12185-018-2421-7
  23. Geduk A, Atesoglu EB, Tarkun P, Mehtap O, Hacihanefioglu A, Demirsoy ET, et al. The role of beta-catenin in Bcr/Abl negative myeloproliferative neoplasms: an immunohistochemical study. Clin Lymphoma Myeloma Leuk. 2015;15:785-789. https://doi.org/10.1016/j.clml.2015.08.084
  24. Gardner JA, Peterson JD, Turner SA, Soares BL, Lancor CR, Dos Santos LL, et al. Detection of CALR mutation in clonal and non clonal hematologic diseases using fragment analysis and next-generation sequencing. Am J Clin Pathol. 2016;146:448-455. https://doi.org/10.1093/ajcp/aqw129
  25. Lussana F, Carobbio A, Salmoiraghi S, Guglielmelli P, Vannucchi AM, Bottazzi B, et al. Driver mutations (JAK2V617F, MPLW515L/K or CALR), pentraxin-3 and C-reactive protein in essential thrombocythemia and polycythemia vera. J Hematol Oncol. 2017;10:2-8. https://doi.org/10.1186/s13045-017-0425-z
  26. Xu W, Li JY, Xia J, Zhang SJ, Fan L, Qiao C. MPL W515L mutation in Chinese patients with myeloproliferative diseases. Leuk Lymphoma. 2008;49:955-958. https://doi.org/10.1080/10428190802035966
  27. Chen X, Qi X, Tan Y, Xu Z, Xu A, Zhang L, et al. Detection of MPL exon10 mutations in 103 Chinese patients with JAK2V617F-negative myeloproliferative neoplasms. Blood Cells Mol Dis. 2011;47:67-71. https://doi.org/10.1016/j.bcmd.2011.04.004
  28. Toyama K, Karasawa M, Yokohama A, Mitsui T, Uchiumi H, Saitoh T, et al. Differences in the JAK2 and MPL mutation status in the cell lineages of the bcr/abl-negative chronic myeloproliferative neoplasm subtypes. Intern Med. 2011;50:2557-2561. https://doi.org/10.2169/internalmedicine.50.5429
  29. Smaili W, Doubaj Y, Laarabi FZ, Lyahyai J, Kerbout M, Mikdame M, et al. CALR gene mutational profile in myeloproliferative neoplasms with nonmutated JAK2 in Moroccan patients: a case series and germline in-frame deletion. Curr Res Transl Med. 2017;65:15-29. https://doi.org/10.1016/j.retram.2016.08.002
  30. Schnittger S, Bacher U, Eder C, Dicker F, Alpermann T, Grossmann V, et al. Molecular analyses of 15,542 patients with suspected BCR-ABL1-negative myeloproliferative disorders allow to develop a stepwise diagnostic workflow. Haematologica. 2012;97:1582-1585.