DOI QR코드

DOI QR Code

Illumination Control in Visible Light Communication Using Transition Frequency Modulation

천이주파수 변조를 이용한 가시광통신의 조명제어

  • Lee, Seong-Ho (Department of Electronics and IT Media Engineering, Seoul National University of Science and Technology)
  • 이성호 (서울과학기술대학교 전자IT미디어공학과)
  • Received : 2021.03.12
  • Accepted : 2021.03.24
  • Published : 2021.03.31

Abstract

In this study, we utilized the duty factor of the transition frequency modulation (TFM) for the illumination control of the light emitting diode (LED) light in visible light communication (VLC). The average optical power is linearly proportional to the duty factor in TFM waveforms. We used the transition frequencies of Na=5 and Nb=1 for the high and the low bits, respectively, of the non-return-to-zero (NRZ) data in the VLC transmitter. A resistor and capacitor high-pass filter (HPF) was used in the VLC receiver to eliminate the 120 Hz optical noise from adjacent lighting lamps and the spikes at the HPF output were used to recover NRZ data from the TFM waveform. In experiments, the illumination of the LED light was controlled in the range of 25-90% of the constant-wave optical power by changing the duty factor of the TFM waveforms.

Keywords

References

  1. S. Rajagopal, R. D. Roberts, and S. K. Lim, "IEEE 802.15.7 visible light communication: modulation schemes and dimming support", IEEE Commun. Mag., Vol. 50, No. 3, pp. 72-82, 2012. https://doi.org/10.1109/MCOM.2012.6163585
  2. Y. K. Cheong, X. W. Ng, and W. Y. Chung, "Hazardless biomedical sensing data transmission using VLC", IEEE Sens. J., Vol. 13, No. 9, pp. 3347-3348, 2013. https://doi.org/10.1109/JSEN.2013.2274329
  3. S. H. Lee, "A passive transponder for visible light identification using a solar cell", IEEE Sens. J., Vol. 15, No. 10, pp. 5398-5403, 2015. https://doi.org/10.1109/JSEN.2015.2440754
  4. S. Li, A. Pandharipande, and F. M. J. Willems, "Unidirectional visible light communication and illumination with LEDs", IEEE Sens. J., Vol. 16, No. 23, pp. 8617-8626, 2016. https://doi.org/10.1109/JSEN.2016.2614968
  5. C. Yao, Z. Guo, G. Long, and H. Zhang, "Performance Comparison among ASK, FSK and DPSK in Visible Light Communication", Opt. Photonics J., Vol. 6, No. 8B, pp. 150-154, 2016. https://doi.org/10.4236/opj.2016.68B025
  6. A. M. Cailean and M. Dimian, "Current Challenges for Visible Light Communications Usage in Vehicle Applications: A Survey", IEEE Commun. Surv. Tutor., Vol. 19, No. 4, pp. 2681-2703, 2017. https://doi.org/10.1109/COMST.2017.2706940
  7. V. P. Rachim, Y. Jiang, H. S. Lee, and W. Y. Chung, "Demonstration of long-distance hazard-free wearable EEG monitoring system using mobile phone visible light communication", Opt. Express, Vol. 25, No. 2, pp. 713-719, 2017. https://doi.org/10.1364/OE.25.000713