DOI QR코드

DOI QR Code

Multi-gear Combination Analysis for High Gear Ratio of Coaxial Magnetic Gear

동축 마그네틱 기어의 고 기어비 적용을 위한 다중 기어 조합분석

  • 박의종 (조선대학교 스마트이동체융합시스템공학부) ;
  • 김용재 (조선대학교 전기공학과)
  • Received : 2021.02.10
  • Accepted : 2021.04.17
  • Published : 2021.04.30

Abstract

Since coaxial magnetic gears use non-contact power transmission, friction, wear, noise, and heat generated in the power transmission process of existing mechanical gears can be minimized. Currently, research for application to various industries is being actively conducted, but among the characteristics of coaxial magnetic gears, the problem of rapidly decreasing torque density at a high gear ratio was discussed. This paper proposes a direction for multiple gear combination using low gear ratio coaxial magnetic gears with high torque density. In order to confirm the effectiveness of the method, the torque density was compared with a single high gear ratio model, and the combination and design direction of multiple coaxial magnetic gears were shown.

동축 마그네틱 기어는 비접촉 동력전달을 사용하기 때문에 기존 기계식 기어의 동력전달과정에서 발생하는 마찰, 마모, 소음, 발열을 최소화할 수 있다. 현재 다양한 산업에 적용하기 위한 연구가 활발히 진행되고 있으나 동축 마그네틱 기어가 갖는 특징 중, 높은 기어비에서 토크밀도가 급격히 감소하는 문제가 거론되었다. 본 논문은 높은 토크밀도를 갖는 저 기어비 동축 마그네틱 기어를 이용하여, 이들을 다중으로 결합하는 방향을 제시하였다. 해당 방법의 유효성을 확인하기 위해 단일형태의 고 기어비 모델과 토크밀도를 비교하고 다중 동축 마그네틱 기어의 기어비 조합을 분석함으로써 가장 우수한 조합을 선정하는 설계 방향을 나타내었다.

Keywords

References

  1. E. Park and Y. Kim, "Torque Ripple Improving and Analysis of Coil-winding Rotor of Magnetic Gear," J. of the Korea Institute of Electronic Communication Sciences, vol. 15, no. 2, 2020, pp. 259-266. https://doi.org/10.13067/JKIECS.2020.15.2.259
  2. H. Cho and W. Kim, "Sensorless Control of High-Speed BLDC," J. of the Korea Institute of Electronic Communication Sciences, vol. 15, no. 3, 2020, pp. 503-512. https://doi.org/10.13067/JKIECS.2020.15.3.503
  3. B. Lee, H. Kwon, E, Son, H. Ko, and Y. Song, "Knee Rehabilitation System through EMG Signal and BLDC Motor Control," J. of the Korea Institute of Electronic Communication Sciences, vol. 14, no. 5, 2019, pp. 1009-1018.
  4. K. Atallah and D. Howe, "A novel high-performance magnetic gear," IEEE Trans. Magnetics, vol. 37, no. 4, 2001, pp. 2844-2845. https://doi.org/10.1109/20.951324
  5. K. Atallah, S. D. Calverley, and D. Howe, "Design, analysis and realisation of a highperformance magnetic gear," IEE Proc.-Electr. Power Appl., vol. 151, no. 2, 2004, pp. 135-143. https://doi.org/10.1049/ip-epa:20040224
  6. S. Kim, D. Kim, C, Gim, D. Lee, and Y. Kim, "Analysis of Efficiency and Loss due to Number of Poles in Magnetic Gears," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 6, 2018, pp. 1023-1028.
  7. M. Filippini and P, Alotto, "An optimization tool for coaxial magnetic gears," The international journal for computation and mathematics in electrical and electronic engineering, vol. 36, no. 5, 2017, pp. 1526-1539. https://doi.org/10.1108/COMPEL-02-2017-0068
  8. E. Gobl, G. Jungmayr, E. Marth, and W. Amrhein, "Optimization and Comparison of Coaxial Magnetic Gears With and Without Back Iron," IEEE Trans. Magn., vol. 54, no. 11, 2018, pp. 8001604.
  9. G. Jungmayr, J. Loeffler, B. Winter, F. Jeske, and W. Amrhein, "Magnetic Gear: Radial Force, Cogging Torque, Skewing, and Optimization," IEEE Trans. Industry Applications, vol. 52, no. 5, 2016, pp. 3822-3830. https://doi.org/10.1109/TIA.2016.2571267
  10. D. Jang and J. Chang, "Effect of Stationary Pole Pieces with Bridges on Electromagnetic and Mechanical Performance of a Coaxial Magnetic Gear," J. of Magnetics, vol. 18, no. 2, 2013, pp. 207-211. https://doi.org/10.4283/JMAG.2013.18.2.207
  11. X. Zhang, X. Liu, and Z. Chen, "A Novel Coaxial Magnetic Gear and Its Integration With Permanent-Magnet Brushless Motor," IEEE Trans. Magn., vol. 52, no. 7, 2016, pp. 8203304.