DOI QR코드

DOI QR Code

A Study on the Atmospheric Pressure Control of the VARTM Process for Increasing the Fiber Volume Fraction and Reducing Void

섬유부피분율 증가와 공극 감소를 위한 VARTM 공정의 대기압 제어에 관한 연구

  • Kwak, Seong-Hun (Technology & Innovation Division, Gyeongbuk Hybrid Technology Institute) ;
  • Kim, Tae-Jun (Technology & Innovation Division, Gyeongbuk Hybrid Technology Institute) ;
  • Tak, Yun-Hak (Technology & Innovation Division, Gyeongbuk Hybrid Technology Institute) ;
  • Kwon, Sung-Il (Defense Engineering Team, Hankuk Fiber Co., Ltd.) ;
  • Lee, Jea-Hyun (Defense Engineering Team, Hankuk Fiber Co., Ltd.) ;
  • Kim, Sang-Yong (Aerospace Technology Research Institute, Agency for Defense Development) ;
  • Lee, Jong-Cheon (Aerospace Technology Research Institute, Agency for Defense Development)
  • Received : 2020.12.03
  • Accepted : 2021.03.03
  • Published : 2021.04.30

Abstract

VARTM (Vacuum-assisted resin transfer molding) process is a low-cost process technology and affiliated with OoA (Out of Autoclave). Besides, it has been widely used in various fields. However, because of its lower quality than the autoclave process, it isn't easy to apply the VARTM process to the aerospace industry, which requires high reliability. The main problem of the VARTM process is the loss of mechanical properties due to the low fiber volume fraction and high void content in comparison to the autoclave. Therefore, many researchers have studied to reduce void and increase fiber volume fraction. This study examines whether the method of controlling atmospheric pressure could increase the fiber volume fraction and reduce void during the resin impregnation process. Reliability evaluation was confirmed by compressive strength test, fiber volume fraction analysis, and optical microscopy. As a result, it was confirmed that increasing the atmospheric pressure step by step in the VARTM process of impregnating the preform with resin effectively increases the fiber volume fraction and reduces void.

VARTM(Vacuum-assisted resin transfer molding) 공정은 OoA(Out of Autoclave)에 속하는 저가형 공정기술로 다양한 분야에 널리 사용되어 왔다. 그러나 오토클레이브 공정보다 품질이 낮아 고신뢰성이 요구되는 항공산업에는 적용하기 어려웠다. VARTM 공정의 주요 문제는 오토클레이브 대비 낮은 섬유부피분율과 높은 Void 함량에 의한 기계적 물성의 손실이었다. 따라서 많은 연구자들이 Void를 줄이고 섬유부피분율을 높일 수 있는 연구를 수행해 왔다. 이러한 연구의 흐름에 따라 본 연구에서는 수지 주입 과정 중 대기압을 제어하는 방법이 섬유부피분율을 높이고 Void를 감소시킬 수 있는지 검토하였다. 신뢰성 평가는 Void와 연관성이 있는 압축강도시험, 섬유부피분율 분석, 광학현미경 촬영을 통해 확인하였다. 결과적으로 VARTM 공정에서 수지 주입과정 중 대기압을 단계별로 높이는 방법이 섬유부피분율 증가와 Void 감소에 직접적인 효과가 있음을 확인하였다.

Keywords

References

  1. Seemann, W.H., "Plastic Transfer Molding Techniques for the Production of Fiber Reinforced Plastic Structures. US Patent 4902215", 1990.
  2. Seemann, W.H., "Unitary Vacuum Bag for Forming Fiber Reinforced Composite Articles. US Patent 5316462", 1994.
  3. Nagao, Y., Iwahori, Y., Hirano, Y., and Aoki, Y., "Low Cost Composite Wing Structure Manufacturing Technology Development Program in JAXA", in Proceedings of the 16th International Conference on Composite Materials (ICCM-16), Paper No. MoAM1-05pl, 2007.
  4. Mahfuz, H., Majumdar, P., Saha, M., Shamery, F., and Jeelani, S., "Integral Manufacturing of Composite Skin-stringer Assembly and their Stability Analyses", Applied Composite Materials, Vol. 11, No. 3, 2004, pp. 155-171. https://doi.org/10.1023/B:ACMA.0000026585.37973.c8
  5. Park, D.C., Kim, T.G., Kim, S.H., Shin, D.H., Kim, H.W., and Han, J.W., "Evaluation of Physical and Mechanical Properties based on Liquid Composite Molding", Composites Research, Vol. 31, No. 6, 2018, pp. 304-310.
  6. Woods, J.A., Modin, A.E., Hawkins, R.D., and Hanks, D.J., "Controlled Atmospheric Pressure Resin Infusion Process. US Patent 7334782B2", 2008.
  7. Waldrop Iii, J.C., Harshman, B., Burkett, W.R., Tegeler, A.F., Sesti, C.J., and Weinman, W.P., "Double Bag Vacuum Infusion Process. US Patent 7413694B2", 2008.
  8. Chen, D., "Improvements of Vacuum-assisted Resin Transfer Molding Process and Applications to Composite Structures", PhD Thesis, Kyushu University, JP, 2014.
  9. Gama, B.A., Li, H., Li, W., Paesano, A., Heider, D. and Gillespie, J., "Improvement of Dimensional Tolerances during VARTM Processing", International Sampe Technical Conference, 2001, pp. 1415-1427.
  10. Niggemann, C., Song, Y.S., Gillespie, J.W., and Heider, D., "Experimental Investigation of the Controlled Atmospheric Pressure Resin Infusion (CAPRI) Process", Journal of Composite Materials, Vol. 42, No. 11, 2008, pp. 1049-1061. https://doi.org/10.1177/0021998308090650
  11. Bender, D., Schuster, J., and Heider, D., "Flow Rate Control during Vacuum-assisted Resin Transfer Molding (VARTM) Processing", Composites Science and Technology, Vol. 66, No. 13, 2006, pp. 2265-2271.
  12. Grimsly, B.W., Characterization of the Vacuum Assisted Resin Transfer Molding Process for Fabrication of Aerospace Composites, PhD Thesis, Virginia Tech, US, 2005.
  13. Leclerc, J.S., and Ruiz, E., "Porosity Reduction Using Optimized Flow Velocity in Resin Transfer Molding", Composites Part A: Applied Science and Manufacturing, Vol. 39, No. 12, 2008, pp. 1859-1868. https://doi.org/10.1016/j.compositesa.2008.09.008
  14. Eun, S.W., and Lee, W.I., "Experimental Study of the Microvoids Formation and Transport in the Vacuum Assisted Resin Transfer Molding Process", Composites Research, Vol. 16, No. 6, 2003, pp. 10-15.
  15. Kang, M.K., Bae, J.H., and Lee, W.I., "Three-Dimensional Numerical Simulation of Mold-Filling and Void Formation During Vacuum-Assisted Resin Transfer Molding", Composites Research, Vol. 17, No. 3, 2004, pp. 1-7.
  16. Kim, S.O., Seong, D.G., Um, M.K., and Choi, J.H., "Experimental and Phenomenological Modeling Studies on Variation of Fiber Volume Fraction during Resin Impregnation in VARTM", Composites Research, Vol. 28, No. 6, 2015, pp. 340-347.
  17. Hwang, B.S., Um, M.K., and Lee, S.K., "A Study on the Process Parameters for High-Quality Laminates Using Resin Transfer Molding", Composites Research, Vol. 10, No. 3, 1997, pp. 22-33.