DOI QR코드

DOI QR Code

Mesenchymal stem cells in the treatment of osteonecrosis of the jaw

  • Received : 2020.08.23
  • Accepted : 2020.11.10
  • Published : 2021.04.30

Abstract

Medication-related osteonecrosis of the jaw (MRONJ) has recently associated to the increase in antiresorptive and anti-angiogenic drugs prescriptions in the treatment of oncologic and osteoporotic patients. The physiopathogenesis of MRONJ remains unclear and available treatments are unsatisfactory. Newer pharmacological treatments have shown good results, but are not curative and could have major side effects. At the same time as pharmacological treatments, mesenchymal stem cells (MSCs) have emerged as a promising therapeutic modality for tissue regeneration and repair. MSCs are multipotential non-hematopoietic progenitor cells capable to differentiating into multiple lineages of the mesenchyme. Bone marrow MSCs can differentiate into osteogenic cells and display immunological properties and secrete paracrine anti-inflammatory factors in damaged tissues. The immunomodulatory, reparative, and anti-inflammatory properties of bone marrow MSCs have been tested in a variety of animal models of MRONJ and applied in specific clinical settings. The aim of this review is to discuss critically the immunogenicity and immunomodulatory properties of MSCs, both in vitro and in vivo, the possible underlying mechanisms of their effects, and their potential clinical use as modulators of immune responses in MRONJ, and to identify clinical safety and recommendations for future research.

Keywords

References

  1. Marx RE. Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: a growing epidemic. J Oral Maxillofac Surg 2003;61:1115-7. https://doi.org/10.1016/s0278-2391(03)00720-1
  2. Ruggiero SL, Dodson TB, Fantasia J, Goodday R, Aghaloo T, Mehrotra B, et al.; American Association of Oral and Maxillofacial Surgeons. American Association of Oral and Maxillofacial Surgeons position paper on medication-related osteonecrosis of the jaw--2014 update. J Oral Maxillofac Surg 2014;72:1938-56. https://doi.org/10.1016/j.joms.2014.04.031
  3. Rollason V, Laverriere A, MacDonald LC, Walsh T, Tramer MR, Vogt-Ferrier NB. Interventions for treating bisphosphonate-related osteonecrosis of the jaw (BRONJ). Cochrane Database Syst Rev 2016;2:CD008455. https://doi.org/10.1002/14651858.CD008455.pub2
  4. Lombard T, Neirinckx V, Rogister B, Gilon Y, Wislet S. Medication-related osteonecrosis of the jaw: new insights into molecular mechanisms and cellular therapeutic approaches. Stem Cells Int 2016;2016:8768162. https://doi.org/10.1155/2016/8768162
  5. Fortunato L, Bennardo F, Buffone C, Giudice A. Is the application of platelet concentrates effective in the prevention and treatment of medication-related osteonecrosis of the jaw? A systematic review. J Craniomaxillofac Surg 2020;48:268-85. https://doi.org/10.1016/j.jcms.2020.01.014
  6. Bernardo ME, Locatelli F, Fibbe WE. Mesenchymal stromal cells. Ann N Y Acad Sci 2009;1176:101-17. https://doi.org/10.1111/j.1749-6632.2009.04607.x
  7. Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells. Blood 2007;110:3499-506. https://doi.org/10.1182/blood-2007-02-069716
  8. Gangji V, Hauzeur JP. Cellular-based therapy for osteonecrosis. Orthop Clin North Am 2009;40:213-21. https://doi.org/10.1016/j.ocl.2008.10.009
  9. Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, et al. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 2001;344:385-6. https://doi.org/10.1056/NEJM200102013440516
  10. Gangji V, Hauzeur JP, Matos C, De Maertelaer V, Toungouz M, Lambermont M. Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells. A pilot study. J Bone Joint Surg Am 2004;86:1153-60. https://doi.org/10.2106/00004623-200406000-00006
  11. Kikuiri T, Kim I, Yamaza T, Akiyama K, Zhang Q, Li Y, et al. Cell-based immunotherapy with mesenchymal stem cells cures bisphosphonate-related osteonecrosis of the jaw-like disease in mice. J Bone Miner Res 2010;25:1668-79. https://doi.org/10.1002/jbmr.37
  12. Li Y, Xu J, Mao L, Liu Y, Gao R, Zheng Z, et al. Allogeneic mesenchymal stem cell therapy for bisphosphonate-related jaw osteonecrosis in Swine. Stem Cells Dev 2013;22:2047-56. https://doi.org/10.1089/scd.2012.0615
  13. Tatsumi K, Ohashi K, Matsubara Y, Kohori A, Ohno T, Kakidachi H, et al. Tissue factor triggers procoagulation in transplanted mesenchymal stem cells leading to thromboembolism. Biochem Biophys Res Commun 2013;431:203-9. https://doi.org/10.1016/j.bbrc.2012.12.134
  14. Breitbach M, Bostani T, Roell W, Xia Y, Dewald O, Nygren JM, et al. Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 2007;110:1362-9. https://doi.org/10.1182/blood-2006-12-063412
  15. Kaibuchi N, Iwata T, Yamato M, Okano T, Ando T. Multipotent mesenchymal stromal cell sheet therapy for bisphosphonaterelated osteonecrosis of the jaw in a rat model. Acta Biomater 2016;42:400-10. https://doi.org/10.1016/j.actbio.2016.06.022
  16. Matsuura Y, Atsuta I, Ayukawa Y, Yamaza T, Kondo R, Takahashi A, et al. Therapeutic interactions between mesenchymal stem cells for healing medication-related osteonecrosis of the jaw. Stem Cell Res Ther 2016;7:119. https://doi.org/10.1186/s13287-016-0367-3
  17. Ogata K, Katagiri W, Hibi H. Secretomes from mesenchymal stem cells participate in the regulation of osteoclastogenesis in vitro. Clin Oral Investig 2017;21:1979-88. https://doi.org/10.1007/s00784-016-1986-x
  18. Ogata K, Matsumura M, Moriyama M, Katagiri W, Hibi H, Nakamura S. Cytokine mixtures mimicking secretomes from mesenchymal stem cells improve medication-related osteonecrosis of the jaw in a rat model. JBMR Plus 2017;2:69-80. https://doi.org/10.1002/jbm4.10013
  19. Barba-Recreo P, Del Castillo Pardo de Vera JL, Georgiev-Hristov T, Ruiz Bravo-Burguillos E, Abarrategi A, Burgueno M, et al. Adipose-derived stem cells and platelet-rich plasma for preventive treatment of bisphosphonate-related osteonecrosis of the jaw in a murine model. J Craniomaxillofac Surg 2015;43:1161-8. https://doi.org/10.1016/j.jcms.2015.04.026
  20. Kuroshima S, Sasaki M, Nakajima K, Tamaki S, Hayano H, Sawase T. Transplantation of noncultured stromal vascular fraction cells of adipose tissue ameliorates osteonecrosis of the jaw-like lesions in mice. J Bone Miner Res 2018;33:154-66. https://doi.org/10.1002/jbmr.3292
  21. Alonso-Rodriguez E, Gonzalez-Martin-Moro J, Cebrian-Carretero JL, Del Castillo JL, Pozo-Kreilinger JJ, Ruiz-Bravo E, et al. Bisphosphonate-related osteonecrosis. Application of adipose-derived stem cells in an experimental murine model. Med Oral Patol Oral Cir Bucal 2019;24:e529-36. https://doi.org/10.4317/medoral.22959
  22. Zang X, He L, Zhao L, He Y, Xiao E, Zhang Y. Adipose-derived stem cells prevent the onset of bisphosphonate-related osteonecrosis of the jaw through transforming growth factor β-1-mediated gingival wound healing. Stem Cell Res Ther 2019;10:169. https://doi.org/10.1186/s13287-019-1277-y
  23. Gao SY, Lin RB, Huang SH, Liang YJ, Li X, Zhang SE, et al. PDGF-BB exhibited therapeutic effects on rat model of bisphosphonate-related osteonecrosis of the jaw by enhancing angiogenesis and osteogenesis. Bone 2021;144:115117. https://doi.org/10.1016/j.bone.2019.115117
  24. Watanabe J, Sakai K, Urata Y, Toyama N, Nakamichi E, Hibi H. Extracellular vesicles of stem cells to prevent BRONJ. J Dent Res 2020;99:552-60. https://doi.org/10.1177/0022034520906793
  25. Elad S, Czerninski R, Avgil M, Or R. Hematopoietic stem cells and bisphosphonate-related osteonecrosis of the jaw. Support Care Cancer 2005;13:455. https://doi.org/10.1111/odi.12056
  26. Matsubara T, Suardita K, Ishii M, Sugiyama M, Igarashi A, Oda R, et al. Alveolar bone marrow as a cell source for regenerative medicine: differences between alveolar and iliac bone marrow stromal cells. J Bone Miner Res 2005;20:399-409. https://doi.org/10.1359/JBMR.041117
  27. Cella L, Oppici A, Arbasi M, Moretto M, Piepoli M, Vallisa D, et al. Autologous bone marrow stem cell intralesional transplantation repairing bisphosphonate related osteonecrosis of the jaw. Head Face Med 2011;7:16. https://doi.org/10.1186/1746-160X-7-16
  28. He LH, Xiao E, An JG, He Y, Chen S, Zhao L, et al. Role of bone marrow stromal cells in impaired bone repair from BRONJ osseous lesions. J Dent Res 2017;96:539-46. https://doi.org/10.1177/0022034517691507
  29. Voss PJ, Matsumoto A, Alvarado E, Schmelzeisen R, Duttenhofer F, Poxleitner P. Treatment of stage II medication-related osteonecrosis of the jaw with necrosectomy and autologous bone marrow mesenchymal stem cells. Odontology 2017;105:484-93. https://doi.org/10.1007/s10266-017-0295-4
  30. De Santis GC, de Macedo LD, Orellana MD, Innocentini LMAR, Ferrari TC, Ricz HMA, et al. Mesenchymal stromal cells administration for osteonecrosis of the jaw caused by bisphosphonate: report of two cases. Acta Oncol 2020;59:789-92. https://doi.org/10.1080/0284186X.2020.1730004
  31. Bouland C, Meuleman N, Widelec J, Keiani-Mothlagh K, Voisin C, Lagneaux L, et al. Case reports of medication-related osteonecrosis of the jaw (MRONJ) treated with uncultured stromal vascular fraction and L-PRF. J Stomatol Oral Maxillofac Surg 2020. https://doi.org/10.1016/j.jormas.2020.05.024 [Epub ahead of print]
  32. Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 2001;7:259-64. https://doi.org/10.1016/s1471-4914(01)02016-0
  33. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001;7:211-28. https://doi.org/10.1089/107632701300062859
  34. Robey PG. Cell sources for bone regeneration: the good, the bad, and the ugly (but promising). Tissue Eng Part B Rev 2011;17:423-30. https://doi.org/10.1089/ten.teb.2011.0199
  35. Lotfy A, El-Sherbiny YM, Cuthbert R, Jones E, Badawy A. Comparative study of biological characteristics of mesenchymal stem cells isolated from mouse bone marrow and peripheral blood. Biomed Rep 2019;11:165-70. https://doi.org/10.3892/br.2019.1236
  36. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006;8:315-7. https://doi.org/10.1080/14653240600855905
  37. Buhring HJ, Battula VL, Treml S, Kanz L, Vogel W. Novel markers for the isolation of primary bone marrow derived MSC with multilineage differentiation capacity. Blood 2006;108:2573. https://doi.org/10.1182/blood.V108.11.2573.2573
  38. Im GI, Shin YW, Lee KB. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthritis Cartilage 2005;13:845-53. https://doi.org/10.1016/j.joca.2005.05.005
  39. Traktuev DO, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R, et al. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 2008;102:77-85. https://doi.org/10.1161/CIRCRESAHA.107.159475
  40. Yang YK. Aging of mesenchymal stem cells: implication in regenerative medicine. Regen Ther 2018;9:120-2. https://doi.org/10.1016/j.reth.2018.09.002
  41. Kolf CM, Cho E, Tuan RS. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther 2007;9:204. https://doi.org/10.1186/ar2116
  42. Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003;102:3837-44. https://doi.org/10.1182/blood-2003-04-1193
  43. Le Blanc K. Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 2003;5:485-9. https://doi.org/10.1080/14653240310003611
  44. Eliopoulos N, Stagg J, Lejeune L, Pommey S, Galipeau J. Allogeneic marrow stromal cells are immune rejected by MHC class Iand class II-mismatched recipient mice. Blood 2005;106:4057-65. https://doi.org/10.1182/blood-2005-03-1004
  45. Sharaf-Eldin WE, Abu-Shahba N, Mahmoud M, El-Badri N. The modulatory effects of mesenchymal stem cells on osteoclastogenesis. Stem Cells Int 2016;2016:1908365. https://doi.org/10.1155/2016/1908365
  46. Oses C, Olivares B, Ezquer M, Acosta C, Bosch P, Donoso M, et al. Preconditioning of adipose tissue-derived mesenchymal stem cells with deferoxamine increases the production of proangiogenic, neuroprotective and anti-inflammatory factors: potential application in the treatment of diabetic neuropathy. PLoS One 2017;12:e0178011. https://doi.org/10.1371/journal.pone.0178011
  47. Hocevar BA, Brown TL, Howe PH. TGF-beta induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J 1999;18:1345-56. https://doi.org/10.1093/emboj/18.5.1345
  48. Tao T, Li Y, Gui C, Ma Y, Ge Y, Dai H, et al. Fibronectin enhances cartilage repair by activating progenitor cells through integrin α5β1 receptor. Tissue Eng Part A 2018;24:1112-24. https://doi.org/10.1089/ten.TEA.2017.0322
  49. Clark RA, McCoy GA, Folkvord JM, McPherson JM. TGF-beta 1 stimulates cultured human fibroblasts to proliferate and produce tissue-like fibroplasia: a fibronectin matrix-dependent event. J Cell Physiol 1997;170:69-80. https://doi.org/10.1002/(SICI)1097-4652(199701)170:1<69::AID-JCP8>3.0.CO;2-J
  50. Kaigler D, Krebsbach PH, West ER, Horger K, Huang YC, Mooney DJ. Endothelial cell modulation of bone marrow stromal cell osteogenic potential. FASEB J 2005;19:665-7. https://doi.org/10.1096/fj.04-2529fje
  51. Liang Y, Wen L, Shang F, Wu J, Sui K, Ding Y. Endothelial progenitors enhanced the osteogenic capacities of mesenchymal stem cells in vitro and in a rat alveolar bone defect model. Arch Oral Biol 2016;68:123-30. https://doi.org/10.1016/j.archoralbio.2016.04.007
  52. Wen L, Wang Y, Wen N, Yuan G, Wen M, Zhang L, et al. Role of endothelial progenitor cells in maintaining stemness and enhancing differentiation of mesenchymal stem cells by indirect cell-cell interaction. Stem Cells Dev 2016;25:123-38. https://doi.org/10.1089/scd.2015.0049
  53. Farre-Guasch E, Bravenboer N, Helder MN, Schulten EAJM, Ten Bruggenkate CM, Klein-Nulend J. Blood vessel formation and bone regeneration potential of the stromal vascular fraction seeded on a calcium phosphate scaffold in the human maxillary sinus floor elevation model. Materials (Basel) 2018;11:161. https://doi.org/10.3390/ma11010161
  54. Marolt Presen D, Traweger A, Gimona M, Redl H. Mesenchymal stromal cell-based bone regeneration therapies: from cell transplantation and tissue engineering to therapeutic secretomes and extracellular vesicles. Front Bioeng Biotechnol 2019;7:352. https://doi.org/10.3389/fbioe.2019.00352
  55. Barreca MM, Cancemi P, Geraci F. Mesenchymal and induced pluripotent stem cells-derived extracellular vesicles: the new frontier for regenerative medicine? Cells 2020;9:1163. https://doi.org/10.3390/cells9051163
  56. Lotvall J, Hill AF, Hochberg F, Buzas EI, Di Vizio D, Gardiner C, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles 2014;3:26913. https://doi.org/10.3402/jev.v3.26913
  57. Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther 2015;23:812-23. https://doi.org/10.1038/mt.2015.44
  58. Yanez-Mo M, Siljander PR, Andreu Z, Zavec AB, Borras FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 2015;4:27066. https://doi.org/10.3402/jev.v4.27066
  59. Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F, et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 2009;20:1053-67. https://doi.org/10.1681/ASN.2008070798
  60. Spees JL, Olson SD, Whitney MJ, Prockop DJ. Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci U S A 2006;103:1283-8. https://doi.org/10.1073/pnas.0510511103
  61. Zhao Q, Ren H, Han Z. Mesenchymal stem cells: immunomodulatory capability and clinical potential in immune diseases. J Cell Immunother 2016;2:3-20. https://doi.org/10.1016/j.jocit.2014.12.001
  62. Beckermann BM, Kallifatidis G, Groth A, Frommhold D, Apel A, Mattern J, et al. VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. Br J Cancer 2008;99:622-31. https://doi.org/10.1038/sj.bjc.6604508
  63. Razban V, Lotfi AS, Soleimani M, Ahmadi H, Massumi M, Khajeh S, et al. HIF-1α overexpression induces angiogenesis in mesenchymal stem cells. Biores Open Access 2012;1:174-83. https://doi.org/10.1089/biores.2012.9905
  64. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008;3:301-13. https://doi.org/10.1016/j.stem.2008.07.003
  65. Chow L, Johnson V, Impastato R, Coy J, Strumpf A, Dow S. Antibacterial activity of human mesenchymal stem cells mediated directly by constitutively secreted factors and indirectly by activation of innate immune effector cells. Stem Cells Transl Med 2020;9:235-49. https://doi.org/10.1002/sctm.19-0092
  66. Krasnodembskaya A, Song Y, Fang X, Gupta N, Serikov V, Lee JW, et al. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells 2010;28:2229-38. https://doi.org/10.1002/stem.544
  67. Lichtman MK, Otero-Vinas M, Falanga V. Transforming growth factor beta (TGF-β) isoforms in wound healing and fibrosis. Wound Repair Regen 2016;24:215-22. https://doi.org/10.1111/wrr.12398
  68. Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004;363:1439-41. https://doi.org/10.1016/S0140-6736(04)16104-7
  69. Duijvestein M, Vos AC, Roelofs H, Wildenberg ME, Wendrich BB, Verspaget HW, et al. Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn's disease: results of a phase I study. Gut 2010;59:1662-9. https://doi.org/10.1136/gut.2010.215152
  70. Liang J, Zhang H, Wang D, Feng X, Wang H, Hua B, et al. Allogeneic mesenchymal stem cell transplantation in seven patients with refractory inflammatory bowel disease. Gut 2012;61:468-9. https://doi.org/10.1136/gutjnl-2011-300083
  71. Horwitz EM, Prockop DJ, Gordon PL, Koo WW, Fitzpatrick LA, Neel MD, et al. Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 2001;97:1227-31. https://doi.org/10.1182/blood.v97.5.1227
  72. Sun JM, Kurtzberg J. Cell therapy for diverse central nervous system disorders: inherited metabolic diseases and autism. Pediatr Res 2018;83:364-71. https://doi.org/10.1038/pr.2017.254
  73. Rosset P, Deschaseaux F, Layrolle P. Cell therapy for bone repair. Orthop Traumatol Surg Res 2014;100(1 Suppl):S107-12. https://doi.org/10.1016/j.otsr.2013.11.010
  74. Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJ, Mouhyi J, et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part I: technological concepts and evolution. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;101:e37-44. https://doi.org/10.1016/j.tripleo.2005.07.008
  75. Dohan Ehrenfest DM, Pinto NR, Pereda A, Jimenez P, Corso MD, Kang BS, et al. The impact of the centrifuge characteristics and centrifugation protocols on the cells, growth factors, and fibrin architecture of a leukocyte- and platelet-rich fibrin (L-PRF) clot and membrane. Platelets 2018;29:171-84. https://doi.org/10.1080/09537104.2017.1293812
  76. Fernando de Almeida Barros Mourao C, Calasans-Maia MD, Del Fabbro M, Le Drapper Vieira F, Coutinho de Mello Machado R, Capella R, et al. The use of platelet-rich fibrin in the management of medication-related osteonecrosis of the jaw: a case series. J Stomatol Oral Maxillofac Surg 2020;121:84-9. https://doi.org/10.1016/j.jormas.2019.02.011
  77. Barbanti SH, Santos AR Jr, Zavaglia CA, Duek EA. Poly(ε-caprolactone) and poly(D,L-lactic acid-co-glycolic acid) scaffolds used in bone tissue engineering prepared by melt compression-particulate leaching method. J Mater Sci Mater Med 2011;22:2377-85. https://doi.org/10.1007/s10856-011-4398-0
  78. Zheng P, Yao Q, Mao F, Liu N, Xu Y, Wei B, et al. Adhesion, proliferation and osteogenic differentiation of mesenchymal stem cells in 3D printed poly-ε-caprolactone/hydroxyapatite scaffolds combined with bone marrow clots. Mol Med Rep 2017;16:5078-84. https://doi.org/10.3892/mmr.2017.7266
  79. Kuznetsov SA, Mankani MH, Leet AI, Ziran N, Gronthos S, Robey PG. Circulating connective tissue precursors: extreme rarity in humans and chondrogenic potential in guinea pigs. Stem Cells 2007;25:1830-9. https://doi.org/10.1634/stemcells.2007-0140
  80. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131:861-72. https://doi.org/10.1016/j.cell.2007.11.019
  81. Liao HT, Chen CT. Osteogenic potential: comparison between bone marrow and adipose-derived mesenchymal stem cells. World J Stem Cells 2014;6:288-95. https://doi.org/10.4252/wjsc.v6.i3.288
  82. Salgado AJ, Reis RL, Sousa NJ, Gimble JM. Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr Stem Cell Res Ther 2010;5:103-10. https://doi.org/10.2174/157488810791268564
  83. Xin H, Katakowski M, Wang F, Qian JY, Liu XS, Ali MM, et al. MicroRNA cluster miR-17-92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats. Stroke 2017;48:747-53. https://doi.org/10.1161/STROKEAHA.116.015204
  84. Xie H, Wang Z, Zhang L, Lei Q, Zhao A, Wang H, et al. Extracellular vesicle-functionalized decalcified bone matrix scaffolds with enhanced pro-angiogenic and pro-bone regeneration activities. Sci Rep 2017;7:45622. https://doi.org/10.1038/srep45622
  85. Li W, Liu Y, Zhang P, Tang Y, Zhou M, Jiang W, et al. Tissue-engineered bone immobilized with human adipose stem cells-derived exosomes promotes bone regeneration. ACS Appl Mater Interfaces 2018;10:5240-54. https://doi.org/10.1021/acsami.7b17620
  86. Shi Q, Qian Z, Liu D, Sun J, Wang X, Liu H, et al. GMSC-derived exosomes combined with a chitosan/silk hydrogel sponge accelerates wound healing in a diabetic rat skin defect model. Front Physiol 2017;8:904. https://doi.org/10.3389/fphys.2017.00904
  87. Shao L, Zhang Y, Lan B, Wang J, Zhang Z, Zhang L, et al. MiR-NA-sequence indicates that mesenchymal stem cells and exosomes have similar mechanism to enhance cardiac repair. Biomed Res Int 2017;2017:4150705. https://doi.org/10.1155/2017/4150705
  88. Park SR, Kim JW, Jun HS, Roh JY, Lee HY, Hong IS. Stem cell secretome and its effect on cellular mechanisms relevant to wound healing. Mol Ther 2018;26:606-17. https://doi.org/10.1016/j.ymthe.2017.09.023
  89. Filip S, Mokry J, Horacek J, English D. Stem cells and the phenomena of plasticity and diversity: a limiting property of carcinogenesis. Stem Cells Dev 2008;17:1031-8. https://doi.org/10.1089/scd.2007.0234
  90. Heslop JA, Hammond TG, Santeramo I, Tort Piella A, Hopp I, Zhou J, et al. Concise review: workshop review: understanding and assessing the risks of stem cell-based therapies. Stem Cells Transl Med 2015;4:389-400. https://doi.org/10.5966/sctm.2014-0110
  91. Cyranoski D. Korean deaths spark inquiry. Nature 2010;468:485. https://doi.org/10.1038/468485a
  92. Jung JW, Kwon M, Choi JC, Shin JW, Park IW, Choi BW, et al. Familial occurrence of pulmonary embolism after intravenous, adipose tissue-derived stem cell therapy. Yonsei Med J 2013;54:1293-6. https://doi.org/10.3349/ymj.2013.54.5.1293
  93. Coppin L, Sokal E, Stephenne X. Thrombogenic risk induced by intravascular mesenchymal stem cell therapy: current status and future perspectives. Cells 2019;8:1160. https://doi.org/10.3390/cells8101160
  94. Stultz BG, McGinnis K, Thompson EE, Lo Surdo JL, Bauer SR, Hursh DA. Chromosomal stability of mesenchymal stromal cells during in vitro culture. Cytotherapy 2016;18:336-43. https://doi.org/10.1016/j.jcyt.2015.11.017
  95. Andre T, Meuleman N, Stamatopoulos B, De Bruyn C, Pieters K, Bron D, et al. Evidences of early senescence in multiple myeloma bone marrow mesenchymal stromal cells. PLoS One 2013;8:e59756. https://doi.org/10.1371/journal.pone.0059756
  96. Stagg J, Pommey S, Eliopoulos N, Galipeau J. Interferon-gamma-stimulated marrow stromal cells: a new type of nonhematopoietic antigen-presenting cell. Blood 2006;107:2570-7. https://doi.org/10.1182/blood-2005-07-2793