DOI QR코드

DOI QR Code

흑구기자 열매의 생리활성 평가 연구

Antioxidant and Anti-inflammatory Properties of Two Extracts from Lycium ruthenicum Murray Fruit

  • 추결 (서경대학교 일반대학원 미용예술학과) ;
  • 이지안 (서경대학교 일반대학원 미용예술학과)
  • Zou, Jie (Dept. of Beauty Art, Graduate School, Seokyeong University) ;
  • Lee, Ji-An (Dept. of Beauty Art, Graduate School, Seokyeong University)
  • 투고 : 2021.03.16
  • 심사 : 2021.05.20
  • 발행 : 2021.05.28

초록

본 연구의 목적은 흑구기자의 생리학적 활성을 평가하여 화장품 산업에 활용 가능한 원료로서의 가능성을 조사하고자 흑구기자 열매에 70% 메탄올(LRM)과 열수(LRW)를 이용하여 추출물을 획득하였다. DPPH와 ABTS 라디컬 소거능 결과 LRW 추출물 보다 LRM 추출물에서 라디컬 소거 활성이 증가하였다. FRAP 분석 결과 LRM 추출물에서 LRW 추출물보다 FRAP 값이 1.3배 증가하였다. 총 폴리페놀 함량은 각각 LRM 추출물에서 31.883±1.395 mg/g, LRW 추출물에서 27.748±2.741 mg/g으로 확인되었다. LRM 추출물은 LPS 자극 후 RAW264.7 세포에서 NO 생성을 억제하였다. 또한 LRM 추출물은 LPS에 의한 COX-2, PGE2, IL-6 및 TNF-α의 발현을 저해하였다. 이러한 결과들로 흑구기자 열매는 화장품에 활용되는 천연 항산화 및 항염 물질로서 가능성이 높을 것으로 기대된다.

The aim of the study was to evaluate the physiological activity of Lycium ruthenicum to investigate their potential as a raw material that can be used in the cosmetic industry. L. ruthenicum fruit extracts were obtained using 70% methanol(LRM) and hot-water(LRW). The DPPH and ABTS radical scavenging abilities were higher in the LRM extract than in the LRW extract. The FRAP value of LRM was about 1.3-fold greater than that of LRW. The polyphenol contents of LRM and LRW were 31.883±1.395 mg/g and 27.748±2.741 mg/g respectively. LRM inhibited the generation of NO in LPS-stimulated RAW264.7 cells. LRM also attenuated the expression of COX-2, PGE2, IL-6, and TNF-α induced by LPS. These results suggests that L. ruthenicum fruits could be use as a source of natural antioxidants and anti-inflammatory agent in cosmetic products.

키워드

참고문헌

  1. R. G. Allen & M. Tresini. (2000). Oxidative stress and gene regulation. Free Radical Biology and Medicine 28(3), 463-499. DOI : 10.1016/s0891-5849(99)00242-7
  2. H. Xu et al. (2018). Reactive oxygen species in skin repair, regeneration, aging, and inflammation. Reactive oxygen species (ROS) in living cells. Chapter 5, 69-85. DOI : 10.5772/intechopen.72747
  3. R. A. Levin & J. S. Miller. (2005). Relationships within tribe Lycieae (Solanaceae): Paraphyly of Lycium and multiple origins of gender dimorphism. American Journal of Botany, 92(12), 2044-2053. DOI : 10.3732/ajb.92.12.2044
  4. Zhao, X. Zhao, B. Dong, P. Li, W. Wei, J. Dang, Z. Liu & H. Yue. (2018). Fatty acid and phytosterol composition, and biological activities of Lycium ruthenicum Murr. seed oil. Journal of Food Science, 83(10), 2448-2456. DOI : 10.1111/1750-3841.14328
  5. L. Han, Y. Ye & Y. Suo. (2014). The resource and economic value of Lycium ruthenicum Murray. Chinese Wild Plant Resources, 33(6), 55-57. DOI : 10.3969/j.issn.1006-9690.2014.06.014
  6. J. Zheng, C. Ding, L. Wang, G. Li, J. Shi & H. Li. (2011). Anthocyanins composition and antioxidant activity of wild Lycium ruthenicum Murr. from Qinghai-Tibet Plateau. Food Chemistry, 126(3), 859-865. DOI : 10.1016/j.foodchem.2010.11.052
  7. Q. Peng, X. Lv, Q. Xu, Y. Li, L. Huang & Y. Du. (2012). Isolation and structural characterization of the polysaccharide LRGP1 from Lycium ruthenicum. Carbohydrate Polymers, 90(1), 95-101. DOI : 10.1016/j.carbpol.2012.04.067
  8. D. Qian, Y. Zhao, G. Yang & L. Huang. (2017). Systematic review of chemical constituents in the genus Lycium (Solanaceae). Molecules, 22(6), 911-944. DOI : 10.3390/molecules22060911
  9. W. Ni, T. Gao, H. Wang, Y. Du, J. Li, C. Li, L. Wei & H. Bi. (2013). Anti-fatigue activity of polysaccharides from the fruits of four tibetan plateau indigenous medicinal plants. Journal of Ethnopharmacology, 150(2), 529-535. DOI : https://doi.org/10.1016/j.jep.2013.08.055
  10. Y. Gong, J. Wu & S. T. Li. (2015). Immunoenhancement effects of Lycium ruthenicum Murr. polysaccharide on cyclophosphamide-induced immunosuppression in mice. International Journal of Clinical and Experimental Medicine, 8(11), 20631-20637.
  11. Y. Duan, F. Chen, X. Yao, J. Zhu, C. Wang, J. Zhang & X. Li. (2015). Protective effect of Lycium ruthenicum Murr. against radiation injury in mice. International Journal of Environmental Research and Public Health, 12(7), 8332-8347. DOI : 10.3390/ijerph120708332
  12. J.-L. Song, Y. Gao & J. Xu. (2020). Protective effects of methanolic extract form fruits of Lycium ruthenicum Murr on 2,2'-azobis (2-amidinopropane) dihydrochloride-induced oxidative stress in LLC-PK1 cells. Pharmacognosy Magazine, 10(40), 522-528. DOI : 10.4103/0973-1296.141790
  13. M. S. Blois. (1958, April). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199-1200. https://doi.org/10.1038/1811199a0
  14. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang & C. R. Evans. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. DOI : 10.1016/s0891-5849(98)00315-3
  15. I. F. Benzie & J. J. Strain. (1996). The ferric reducing ability of plasma(FRAP) as measurement of "antioxidant power" The FRAP assay. Analytical Biochemistry, 239, 70-6. DOI : 10.1006/abio.1996.0292.
  16. AOAC. (1980). Official Methods of Analysis. 13 th ed., Association of Official Analytical Chemists. (pp. 376-384). Washington D.C, USA. DOI : 10.1002/jps.2600700437
  17. A. Murakami, M. Nakashima, T. Koshiba, T. Maoka, H. Nishino, M. Yano, T. Sumida, O. K. Kim, K. Koshimizu & J. Ohigashi. (2000). Modifying effects of carotenoids on superoxide and nitric oxide generation from stimulated leukocytes. Cancer Letters, 149, 115-123. DOI : 10.1016/s0304-3835(99)00351-1
  18. J. H. Park & J. A. Lee. (2021). Evaluation of the cosmeceutical activity of Apocynum lancifolium Russanov extracts. Journal of the Korean Society of Cosmetoloy, 11(1), 236-243.
  19. D. Huang, B. Ou & O. Prior. (2005). The chemistry behind antioxidant capacity assays. Journal of agricultural and food chemistry, 53, 1841-1856. DOI : 10.1021/jf030723c
  20. M-Y. Yang & M-H Kang. (2015). Comparison on physicochemical characteristics and antioxidative effect of lycium barbarum L. and lycium ruthenicum Murr. Hoseo University. DOI : 10.9724/kfcs.2017.33.1.72
  21. B. Liu, Q. Xu & Y. Sun. (2020). Black goji berry(lycium ruthenicum)tea has higher phytochemical contents and in vitro antioxidant properties than red goji berry (lycium barbarum) tea. Food quality and safety, 4, 193-201. DOI : 10.1093/fqsafe/fyaa022
  22. A. Cano, M. Acosta & M. B. Arnao. (2013). A method to measure antioxidant activity in organic media: application to lipophilic vitamins. Communications in Free Radical Research, 5(6), 365-370. DOI : 10.1179/135100000101535933
  23. M. Shen, K. Liu, Y. Liang, G. Liu, J. Sang & C. Li. (2020). Extraction optimization and purification of anthocyanins from Lycium ruthenicum Murr. and evaluation of tyrosinase inhibitory activity of the anthocyanins. Journal of Food Science, 85(3), 696-706. DOI : 10.1111/1750-3841.15037
  24. P. Shah & H. A. Modi. (2015). Comparative study of DPPH, ABTS and FRAP assays for determination of antioxidant activity. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 3(VI), 636-641.
  25. T. Islam, X. Yu, T. S. Badwal & B. Xu. (2017). Comparative studies on phenolic profiles, antioxidant capacities and carotenoid contents of red goji berry (Lycium barbarum) and black goji berry (Lycium ruthenicum). Chemistry Central Journal, 11(1), 59. DOI : 10.1186/s13065-017-0287-z
  26. Q. Peng, H. Liu, S. Shi & M. Li. (2014). Lycium ruthenicum polysaccharide attenuates inflammation through inhibiting TLR4/NF-κB signaling pathway. International Journal of Biological Macromolecules, 67, 330-335. DOI : 10.1016/j.ijbiomac.2014.03.023