DOI QR코드

DOI QR Code

ON n-HYPONOHRMALITY FOR BACKWARD EXTENSIONS OF BERGMAN WEIGHTED SHIFTS

  • DONG, YANWU (Department of Mathematics, Zhanjiang Preschool Education College(Fundamental Education College of Lingnan Normal University)) ;
  • ZHENG, GUIJUN (Department of Mathematics, Zhanjiang Preschool Education College(Fundamental Education College of Lingnan Normal University)) ;
  • LI, CHUNJI (Department of Mathematics, Northeastern University)
  • Received : 2020.05.02
  • Accepted : 2021.02.09
  • Published : 2021.05.30

Abstract

In this paper, we discuss the backward extensions of Bergman shifts Wα(m), where $${\alpha}(m)\;:\;\sqrt{\frac{m}{m+1}},\;{\sqrt{\frac{m+1}{m+2}}},\;{\cdots},\;(m{\in}\mathbb{N})$$. We obtained a complete description of the n-hynonormality for backward one, two and three step extensions.

Keywords

Acknowledgement

The first and second authors were supported by key scientific research projects in Zhanjiang Preschool Education College(ZJYZZD201801).

References

  1. Y.B. Choi, J.K. Han and W.Y. Lee, One-step extension of the Bergman shift, Proc. Amer. Math. Soc. 128 (2000), 3639-3646. https://doi.org/10.1090/S0002-9939-00-05516-7
  2. R. Curto, Joint hyponormality:A bridge between hyponormality and subnormality, Proc. Sym. Math. 51 (1990), 69-91. https://doi.org/10.1090/pspum/051.2/1077422
  3. R. Curto and L. Fialkow, Recursively generated weighted shifts and the subnormal completion problem, Integral Equations Operator Theory 17 (1993), 202-246. https://doi.org/10.1007/BF01200218
  4. R. Curto and L. Fialkow, Recursively generated weighted shifts and the subnormal completion problem, II, Integral Equations and Operator Theory 18 (1994), 369-426. https://doi.org/10.1007/BF01200183
  5. Y. Dong, M.R. Lee and C. Li, New results on k-hyponormality of backward extensions of subnormal weighted shifts, J. Appl. Math. & Informatics 37 (2019), 73-83. https://doi.org/10.14317/JAMI.2019.073
  6. G. Exner, J.Y. Jin, I.B. Jung and J.E. Lee, Weak Hamburger-type weighted shifts and their examples, J. Math. Anal. Appl. 462 (2018), 1357-1380. https://doi.org/10.1016/j.jmaa.2018.02.045
  7. I.B. Jung and C. Li, Backward extensions of hyponormal weighted shifts, Math. Japonica 52 (2000), 267-278.
  8. I.B. Jung and C. Li, A formula for k-hyponormality of backstep extensions of subnormal weighted shifts, Proc. Amer. Math. Soc. 129 (2001), 2343-2351. https://doi.org/10.1090/S0002-9939-00-05844-5
  9. C. Li, Hyponormal weighted shift operators and complex moment problems, Ph.D. Thesis, Kyungpook Nat. Univ. 1999.
  10. C. Li and M.R. Lee, Existence of non-subnormal completely semi-weakly hyponormal weighted shifts, Filomat 31 (2017), 1627-1638. https://doi.org/10.2298/FIL1706627L
  11. C. Li, M.R. Lee and S. Baek, A relationship:subnormal, polynomially hyponormal and semi-weakly hyponormal weighted shifts, J. Math. Anal. Appl. 479 (2019), 703-717. https://doi.org/10.1016/j.jmaa.2019.06.046
  12. C. Li and W. Qi, Formulae of k-hyponormality of backward extensions of Bergman shifts, J. Appl. & Pure Math. 1 (2019), 131-140.
  13. C. Li, W. Qi and H. Wang, Backward extensions of Bergman-type weighed shift, Bull. Korean Math. Soc. 57 (2020), 81-93. https://doi.org/10.4134/BKMS.b190060
  14. J. Stampfli, Which weighted shifts are subnormal, Pacific J. Math. 17 (1966), 367-379. https://doi.org/10.2140/pjm.1966.17.367
  15. MacKichan Software, Inc. Scientific WorkPlace, Version 4.0, MacKichan Software, Inc. 2002.